• 2022-06-09
    设[tex=5.929x2.786]YHIKtHtTy6YeetIBukGWJ29FyEYWVBSkIYhOTWWwEFNeu6iwkaZUSw0MxAVdDIZja+GqhBOYN7rzj76h8n0OTAQxZ8CYMcIQ6P/H2SSArFo=[/tex];求所有与[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可交换的矩阵.
  • 解:由于与[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可交换的矩阵必须是二阶方阵,因此设其为[tex=7.429x2.357]+2Hyrq6ox90t7289xt4t0IbCi1rCQO1f7TplpCkXiRyTEPck2+/HCThEHWa/XXBUc8ycYOd3DwoTGhYfyBdbnWoCisV55yrDswMBMiBWx+BbQMia73B7huQtAzcY8+Hv[/tex].由[tex=23.286x2.786]qTT9ohZSoF+wT3IvQFgnLH+dPGKu1hSx8HkkuZ1hAkGeYoYfpcmCBENjJ/GRHx2uTwPw7ZHZ3f7INi6dkFIXnEs46ZzdraIkG+SBrAuxnMoK4eTYX33qtkaHI7u7ehtwGfUOGETOHgmgzlpXgA3GNwK4pDtpA/n1c4Ny+xkAeanDa696NrhbHChVbSp4xX3KH/ltdiDL83rTdCg22nvKQ7uk0pMx4BBfw5hzKmjWLymhWYgXVcvkeVLLW+fwHvSndXrdY2A2zlNAWBTp6NRqtl810+wwmVGFLOApGmcCCJg2/lfKz2DOsyR/AU/2tu72Y5r0zazuNkZGCSRdln0SxkFUzr8zkoeQgRs0hI1inAU=[/tex],[tex=21.286x2.786]G9Y8jJxidqMKQd7XkN0MTOkGPe1osjqPPnbCjRsZIZqQgZFCjO5Tn238WZ6GwzX9AjtUE0R4ZgBn1IkXFDc28mLisofJYl/0t67DY+KG6sJ+3x6REsVFh1b1cNGfSJHtCsAyRTr+hoQjDcWkaflGp6cY/nnPcAFPXjxDEAFZD2hlTZAgHfPZYAfc1EBrYSuNhmlhEzugR7fd+XrK7aLXJTfWdUfXu9zpUTCeSYt7izvHCYj3Inz19ZLjwCG7exRKU3xtpAe/+xDpAQKro7oDktpR/xqB7BLLPdXW3gPOievoXSzaJPKH90G0iFuRhlQxLKIYV2Tg7OyAKo148cF8S2KOdFAdvlzAYbe/I78nKRo=[/tex]满足[tex=4.0x1.0]C2ybA2jEpDaHaPu0DrTDVQ==[/tex],可推出[tex=6.357x1.214]QAkjCnWO1XQGC0Mur15kfHoOqZp9uLQcR6M9kL011yY=[/tex].因此取[tex=7.571x1.214]lF5J+DsdVtsYF1IJaUxFu8DRiO27x/oqCOKwi/EHLz8=[/tex]([tex=1.429x1.214]HCTRLtzxkeBZo1HKwKR3/g==[/tex]为任意常数),则所有与[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可交换的矩阵为[tex=6.071x2.786]+2Hyrq6ox90t7289xt4t0IbCi1rCQO1f7TplpCkXiRxrc78jujKzo6OFqtyotja/gAULL+tjcNBYr+afs/cbdVGYBXrR9w/vuJoImivTxrw=[/tex].

    内容

    • 0

      假设“☆”是一种新的运算,若3☆2=3×4,6☆3=6×7×8,x☆4=840(x>0),那么x等于: A: 2 B: 3 C: 4 D: 5 E: 6 F: 7 G: 8 H: 9

    • 1

      如果[tex=3.857x1.0]WEeqNxLhaKfDAau4UVxvjg==[/tex] ,矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]就称为与[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可交换,设[tex=29.643x3.5]sB265b1+2I6W6CJtJWrQ0DNdWoL8Nc/dR9sqqvwbt8fxo1CTqALOC9IFUHx1zHLI3m5jzt9+vGnn1DM+MEd7/wAKoOhSgM/qq+t8728zMk0+9gSllESX8t8f9GfXDT+gNTqxUdtOG6VK2xvHiXXyHGcVX4aHrIWm4ZCU1h03jmEGko9v0cgihxCaQGpl0TinN+fbMgp+Wz+zuveZcpjm4huckIh41SDCX78btvMM7tjLac/ZyUS/3JQgqajENpLXQqPfDAydZh28RLV9pt5jA9biXts3fU9XgoiTHHYFSjK/ZDPmhg/y5i2cSAzKWa1ZSUqKgFMYTNoM3AWGLcOMmUgQGDXT9muctPW7Mdq2xwEwEtEMVsqIWQCJH/obNJZneDJ1EgYZxBD2b7VIeOtJyQ==[/tex]求所有与[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可交换的矩阵.

    • 2

      用某种方法排序,调整序列如下,所选排序方法为( )。7 4 2 8 1 0 6 30 4 2 8 1 7 6 30 1 2 8 4 7 6 30 1 2 8 4 7 6 30 1 2 3 4 7 6 80 1 2 3 4 7 6 80 1 2 3 4 6 7 80 1 2 3 4 6 7 8

    • 3

      令[tex=5.929x2.786]YHIKtHtTy6YeetIBukGWJ29FyEYWVBSkIYhOTWWwEFNeu6iwkaZUSw0MxAVdDIZja+GqhBOYN7rzj76h8n0OTAQxZ8CYMcIQ6P/H2SSArFo=[/tex]找出计算[tex=1.357x1.071]317mMb/UfJBjZHDU7raSnoMld3At9ac3IkG0+iYzd/8=[/tex]的公式,其中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]为正整数。

    • 4

      【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=