举一反三
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,证明存在[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],使得[tex=3.214x1.286]2JS6BJRrTSeJjobiUCqEXA==[/tex].
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶实对称矩阵,证明:存在[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=5.357x1.286]K6zxAGBIogIIiD5GFofAx/pmcJwoRykyV8iSjArS8Ys=[/tex],[tex=4.929x1.286]UzUiBuTu85eC8sat7ufimOL6HcqebYAko5n7tYXBrwA=[/tex],其中[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex]为对角矩阵.
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶对称矩阵,证明:[tex=1.571x1.286]aR1a8Eu3rZLX3flcxLOVFw==[/tex]为对称矩阵的充分必要条件是[tex=4.357x1.286]ZHtkzddb6nCZKhzGq6vKqw==[/tex].
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶对称矩阵,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]反对称矩阵,证明:(1)[tex=4.286x1.286]oheUYwhZ0URiNEpsN7L7kA==[/tex]为对称矩阵;(2)[tex=4.286x1.286]eisGgj8YxHUmoBnJQGz1JQ==[/tex]为反对称矩阵.
- 若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶对称矩阵,[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex] 阶矩阵,证明[tex=2.929x1.286]PgI7SwgsQ9tTXWFTdkSmxw==[/tex]为对称矩阵。
内容
- 0
已知3阶方阵[tex=3.929x1.286]1G8NMgGVlwLDHIdIsrUCU+bMw3f1OfnWxrReLBCS8D4=[/tex]与任意3阶方阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]可交换,即[tex=4.357x1.286]hYSGrw5He693xGJsPlhlQQ==[/tex],证明:矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是数量矩阵.
- 1
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵。证明 : 存在一个[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶非零矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex], 使[tex=3.571x1.286]e+srJojTm8Kf62t4In3fUA==[/tex]的充要条件是[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex]。
- 2
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵,[tex=2.786x1.286]N/eE1tAJJwPeRTpYlqOl2g==[/tex],证明:存在一个[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶非零矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],使[tex=3.571x1.286]e+srJojTm8Kf62t4In3fUA==[/tex]的充分必要条件是[tex=3.071x1.286]rues2mK4IiepKYWuwXSq+Q==[/tex].
- 3
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]都是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正交矩阵,证明[tex=1.571x1.286]cHJ4KDAad01mWuGaiQQpfA==[/tex]也是正交矩阵。
- 4
设 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex] 阶矩阵 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 满足 [tex=3.214x1.286]cvAY9E7UF36dthufM/tQNQ==[/tex], [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 为 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶单位矩阵, 证明[tex=9.714x1.357]AFouNbsjp27z7y7knT2SxLqKaXIUbeUPDvoU85KbKwo=[/tex].