• 2022-05-31
    设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶对称矩阵,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]反对称矩阵,证明:(1)[tex=4.286x1.286]oheUYwhZ0URiNEpsN7L7kA==[/tex]为对称矩阵;(2)[tex=4.286x1.286]eisGgj8YxHUmoBnJQGz1JQ==[/tex]为反对称矩阵.
  • 【分析】:仿16题,读者可自证.

    举一反三

    内容

    • 0

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶实对称矩阵,证明:存在[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=5.357x1.286]K6zxAGBIogIIiD5GFofAx/pmcJwoRykyV8iSjArS8Ys=[/tex],[tex=4.929x1.286]UzUiBuTu85eC8sat7ufimOL6HcqebYAko5n7tYXBrwA=[/tex],其中[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex]为对角矩阵.

    • 1

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶实反对称矩阵,证明[tex=3.143x1.286]74sXWPzy2V6V4XDe8D+g8A==[/tex]为正定矩阵.

    • 2

      假设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶反对称矩阵,试证:[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的阶数[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]为奇数时,[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是不可逆矩阵.

    • 3

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]仍为正定矩阵.

    • 4

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,证明存在[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],使得[tex=3.214x1.286]2JS6BJRrTSeJjobiUCqEXA==[/tex].