• 2022-06-09
    考虑下列三阶段的谈判博弈(分1美元):(1)①在第一阶段开端,游戏者1拿走了1美元中[tex=0.857x1.0]eNrW63MZAjR1/Bxu/+ZTvA==[/tex]部分,留给游戏者2为(1-[tex=0.857x1.0]eNrW63MZAjR1/Bxu/+ZTvA==[/tex]);②游戏者2或接受(1-[tex=0.857x1.0]eNrW63MZAjR1/Bxu/+ZTvA==[/tex])(如这样,则博弈结束)或拒绝接受(1-[tex=0.857x1.0]eNrW63MZAjR1/Bxu/+ZTvA==[/tex])(若这样,则博弈继续下去)。(2)①在第二阶段开始,游戏者2提出,游戏者1得[tex=0.857x1.0]yeiG4PqdpeTH4DnWgigX1g==[/tex],游戏者2得(1-[tex=0.857x1.0]yeiG4PqdpeTH4DnWgigX1g==[/tex])。②游戏者1或接受这个[tex=0.857x1.0]yeiG4PqdpeTH4DnWgigX1g==[/tex](若这样,则博弈结束)或拒绝接受[tex=0.857x1.0]yeiG4PqdpeTH4DnWgigX1g==[/tex](若这样,则博弈进入第三阶段)。(3)在第三阶段开始, 游戏者1获[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex], 留给游戏者2的是(1-[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]), 这里0 <[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex] <1。任意两个时期之间的贴现因子为[tex=0.5x1.0]1rH1BG6evzOQayPlKjqQ/w==[/tex],这里0<[tex=0.5x1.0]1rH1BG6evzOQayPlKjqQ/w==[/tex]<1。清你按“ 反向归纳“ 法, 解出[tex=0.857x1.357]3HyN15/NVeCY8aAvPOh/CA==[/tex]。
  • 举一反三