窗体上有一个名称为Text1的文本框,一个名称为Combo1的组合框。将文本框中的内容添加到组合框中所使用的命令是
A: Text1.AddItemCombo1.Text
B: Combo1.AddItemText1.Text
C: Combo1.Text=Text1.Text
D: Text1.Text=Combo1.Text
A: Text1.AddItemCombo1.Text
B: Combo1.AddItemText1.Text
C: Combo1.Text=Text1.Text
D: Text1.Text=Combo1.Text
举一反三
- $\int_{0}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{4}}{[\cos (2t)\mathbf{i}+\sin (2t)\mathbf{j}+t\sin t\mathbf{k}]}\operatorname{dt}=$( ) A: $(\frac{1}{2},\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ B: $(1,\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ C: $(\frac{1}{2},1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ D: $(1,1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
- Text 1
- 已知齐次方程$(x-1){{y}^{''}}-x{{y}^{'}}+y=0$的通解为$Y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}$,则方程$(x-1){{y}^{''}}-x{{y}^{'}}+y={{(x-1)}^{2}}$的通解是( ) A: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{2}}+1)$ B: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{3}}+1)$ C: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}$ D: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}+1$
- Skim the text and answer the following questions. 1) What type of writing is the text?
- 从原点向曲线$$y=1-\ln x$$作切线,则由切线、曲线和$$x$$轴围成图形的面积为(). A: $$\frac{1}{2}{{\text{e}}^{2}}+\text{e}$$ B: $$\frac{1}{2}{{\text{e}}^{2}}-\text{e}$$ C: $${{\text{e}}^{2}}+\text{e}$$ D: $${{\text{e}}^{2}}-\text{e}$$