从原点向曲线$$y=1-\ln x$$作切线,则由切线、曲线和$$x$$轴围成图形的面积为().
A: $$\frac{1}{2}{{\text{e}}^{2}}+\text{e}$$
B: $$\frac{1}{2}{{\text{e}}^{2}}-\text{e}$$
C: $${{\text{e}}^{2}}+\text{e}$$
D: $${{\text{e}}^{2}}-\text{e}$$
A: $$\frac{1}{2}{{\text{e}}^{2}}+\text{e}$$
B: $$\frac{1}{2}{{\text{e}}^{2}}-\text{e}$$
C: $${{\text{e}}^{2}}+\text{e}$$
D: $${{\text{e}}^{2}}-\text{e}$$
举一反三
- 对数螺线$r={{\text{e}}^{\theta }}$在$\theta =\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$对应点处的切线的直角坐标方程为( )。 A: $y+x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ B: $y-x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ C: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x+1)$ D: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x-1)$
- 已知齐次方程$(x-1){{y}^{''}}-x{{y}^{'}}+y=0$的通解为$Y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}$,则方程$(x-1){{y}^{''}}-x{{y}^{'}}+y={{(x-1)}^{2}}$的通解是( ) A: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{2}}+1)$ B: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{3}}+1)$ C: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}$ D: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}+1$
- 以下关系式中,正确的是( )。 A: $2\arctan x+\arcsin \frac{2x}{1+{{x}^{2}}}=\text{ }\!\!\pi\!\!\text{ }$,$|x|\ge 1$ B: $\arctan x=\arcsin \frac{x}{\sqrt{1+{{x}^{2}}}}+\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$-\infty \lt x \lt \infty $ C: $\arcsin x+\arccos x=\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x|\le 1$ D: $\arcsin x=\arctan \frac{x}{\sqrt{1-{{x}^{2}}}}-\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x| \lt 1$
- 函数$y={{\ln }^{3}}{{x}^{2}}$的微分为( )。 A: $\text{d}y=6x{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ B: $\text{d}y=\frac{6}{x}{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ C: $\text{d}y=3{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ D: $\text{d}y=2x{{\ln }^{3}}{{x}^{2}}\ \text{d}x$
- 4.下列各对函数中,是同一函数的原函数的是( ). A: $\arctan x$与$\text{arccot}x$ B: ${{\text{e}}^{x}}$与$\frac{1}{2}{{\text{e}}^{2x}}$ C: $\frac{{{2}^{x}}}{\ln 2}$与${{2}^{x}}+\ln 2$ D: $\ln (2x)$与$\ln x$