设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]为任意集合,证明:如果对任意的集合[tex=4.0x1.214]GSJwi4V/1k3yVvmdSjbswap+bLIoeDg2JexhCT1rlt8=[/tex]当且仅当[tex=2.857x1.143]JVlwECViT/X3d+y1vLZ5Bg==[/tex], 那么[tex=2.571x1.0]4GT+sG7QF0/GBWp2Q6DomQ==[/tex]
举一反三
- 设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。
- 设h为X上函数,证明下列两个条件等价,(1)h为一单射(2)对任意X上的函数[tex=5.429x1.214]3BrfPgAFe5dbHQTMAYnbS+118W4YAj6CiW06EKMaxNI=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]
- 设Y为拓扑空间X的子空间,[tex=2.857x1.143]NVnyOfFr6g+52w3PWMWtUw==[/tex]。证明:如果A是X的开集,则[tex=3.214x1.357]A5fpx1grvjGXknKAptjZSQj/Uched02zngkQag+eknY=[/tex]
- 求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 设h为X上的函数,证明下列两个条件等价。(1)h为一满射,(2)对任意X上的函数[tex=5.429x1.214]OREhy0bsXZWZ6y8PdI7nwHYlaKprN6KYnR/FCpmEbdk=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]