• 2022-06-08
    设向量a2=(1 2 0),a2=(2 3 1),a3=(0 1 -1),若β可由a1.a2.a3线性表示,则k=()。
    A: -2
    B: -1
    C: 1
    D: 2
  • C

    内容

    • 0

      求向量组:a1=(1 0 2 1),a2=(1 2 0 1),a3=(2 1 3 0),a4=(2 5 -1 4),a5=(1 -1 3 -1)的秩和一个最大无关组,并把其余列向量用这个最大无关组线性表示

    • 1

      设向量组α1,α2,α3,β1线性相关,向量组α1,α2,α3,β2线性无关,则对于任意常数k,必有______. A: α1,α2,α3,kβ1+β2线性无关 B: α1,α2,α3,kβ1+β2线性相关 C: α1,α2,α3,β1+kβ2线性无关 D: α1,α2,α3,β1+kβ2线性相关

    • 2

      诺向量β=(-1,1,k)可由向量α1=(1,0,-1),α2=(1,-2,-1)线性无关,则向量K=() A: 0 B: 3 C: 1 D: 4

    • 3

      设向量组{α1,α2,α3}线性无关,向量组{β1,β2,β3}可由向量组{α1,α2,α3}线性表出,且β1=α1+4α2+α3,β2=2α1+α2-α3,β3=α1-3α3,则向量组{β1,β2,β3}线性______.

    • 4

      若向量β可由向量组α1、α2、α3线性表示,则向量组β、α1、α2、α3必( )