设(1 2 3 ) ' 表示行向量(1 2 3 )的转置。对于向量组A:a1=(1 2 0)',a2=(1 0 2) ', 下列哪个向量可以被向量组A线性表示?
A: (1 1 1)'
B: (1 1 0)'
C: (0 1 -1)'
D: (1 0 1)'
A: (1 1 1)'
B: (1 1 0)'
C: (0 1 -1)'
D: (1 0 1)'
举一反三
- 求向量组:a1=(1 0 2 1),a2=(1 2 0 1),a3=(2 1 3 0),a4=(2 5 -1 4),a5=(1 -1 3 -1)的秩和一个最大无关组,并把其余列向量用这个最大无关组线性表示
- 下列向量组中,( )是线性无关向量组。 A: (1, 1, 0), (0, 2, 0), (0, 0, 3) B: (1, 2), (3, 0), (5, 1) C: (2, 6, 0), (3, 9, 0), (0, 0, 2) D: (1, 2), (--3, 0), (5, 1)
- 设向量a2=(1 2 0),a2=(2 3 1),a3=(0 1 -1),若β可由a1.a2.a3线性表示,则k=()。 A: -2 B: -1 C: 1 D: 2
- 向量(1, 1, 1)与向量(1, -1, 1)的向量积 = A: (2, 0, -2) B: (1, 0, -1) C: (-2, 0, 2) D: (-1, 0, 1)
- 确定常数a,使向量组α1=(1,1,a),α2=(1,a,1),α3一(a,1,1)可由向量组β1=(1,1,a)。β2=(-2,a,4),β2=(-2,a,a)线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.