学习率设置大一些可以提高模型的收敛速度,效果更好。( )
举一反三
- 关于梯度下降法中学习率的说法,错误的是______。 A: 学习率设置过小,收敛速度会非常慢 B: 学习率设置过大可能无法收敛 C: 学习率在训练过程中必须是一个固定不变的数 D: 为了兼顾模型的收敛速度和精度,在训练过程中可以动态调整学习率
- 有关神经网络训练时使用的学习率参数说法错误的是? A: 学习率可以与其他网络参数一起训练,对降低代价函数是有利的。 B: 学习率过大更容易导致训练陷入局部极小值。 C: 学习率可以随着训练误差动态调整效果更好。 D: 网络训练时刚开始学习率可以大一些,以便提高学习速度,随后应减少学习率,以免引起学习震荡。
- 有关神经网络训练时使用的学习率参数说法正确的是( )。 A: 学习率可以随着训练误差动态调整效果更好。 B: 学习率过大更容易导致训练陷入局部极小值。 C: 学习率可以与其他网络参数一起训练,对降低代价函数是有利的。 D: 网络训练时刚开始学习率可以大一些,以便提高学习速度,随后应减少学习率,以免引起学习震荡。
- 在训练自适应滤波器时,收敛速度与学习率及输入信号的自相关矩阵的最小特征值取值有关。学习率越大,收敛速度越();最小特征值越小,收敛速度越()
- 以下哪种方法可以提高深度学习模型的表现( )。 A: 使用速度更快的GPU进行训练 B: 增加数据量 C: 精细调整学习率 D: 大幅度增加模型的规模