设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 服从区域 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 上的均匀分布,其中 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是由 [tex=6.714x1.214]Rj6mYeDTThCGfqwpUJMHtQ==[/tex] 与 [tex=2.357x1.214]LxzV0lHNWl1Oblvb2+onBQ==[/tex] 所围成的三角形区域。(1)求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的密度函数 [tex=2.429x1.357]OinXA3ZVgNRT2p4nCuCvcA==[/tex];(2)求条件密度函数 [tex=4.357x1.429]0nOy6cBjVyDBDKww2rCh1cQQnMjvf085jzDKJvddwEM=[/tex]。
举一反三
- 设 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 服从区域 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 上的均匀分布,其中 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 由直线 [tex=4.929x1.143]y+d6dmvr4NYQAkfMGHjUnw==[/tex] 与 [tex=1.857x1.0]X7etWab1J10Xwqu65uIXXQ==[/tex] 所围成。(1)求 [tex=2.071x1.286]6js1OwTSM0ERpXO1jlRj/Q==[/tex] 的边缘密度函数(2)[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否相互独立? 为什么?
- 设 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 服从区域 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 上的均匀分布,其中 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 由直线 [tex=4.929x1.143]y+d6dmvr4NYQAkfMGHjUnw==[/tex] 与 [tex=1.857x1.0]X7etWab1J10Xwqu65uIXXQ==[/tex] 所围成。(1)写出 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合密度函数(2)求概率 [tex=5.5x1.357]qsEhC0SCUINZbPnvm8yVmw==[/tex]
- 设二维连续型随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 服从 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 上的均匀分布,其中 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 由 [tex=3.929x1.214]vEhVsuSMOxpFR0ED5l1/xg==[/tex] 以及 [tex=4.143x1.214]elV8xh6VF/il8BKc8NfOCA==[/tex] 围成的三角形区域. 求 [tex=3.714x1.143]wQlTAdtDs1fa21EP7mnykg==[/tex] 的方差.
- 设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合密度函数为[tex=12.929x3.643]s59y2K1bDNChzmHwfrn1oZMscZzqsMzxrepmwWk2KcUQpqKd8yMS9MfWFtdr1CS+4zfy5v+85aA3CBgWf5+U9g==[/tex](1)求常数 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex];(2)试判断 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?
- 设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合密度函数为[br][/br][tex=11.857x2.429]s59y2K1bDNChzmHwfrn1oaT5Hrfrb0bF6uO4aBSBKVrgXuKKYEVKW7lXU5HjrDnt342HWoIM3jnlYJJ7wb2DJg==[/tex][br][/br](1) 求随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的密度函数[tex=2.5x1.357]QcZcjxOz9jEtsth/EHv/Kg==[/tex];[br][/br](2) 求概率 [tex=5.714x1.357]yodM6xq0K8knKQvqvad6ZQ==[/tex]