举一反三
- 设随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合密度函数为[br][/br][tex=15.286x2.929]dP4cQckxhVALWt3v5f2JJsKz2g+ooBHk+7VVpefJol9QC/vamcn/7paVLREU6+RH37LNnhOMLEZSvPRPap2Pwa79zK1Wq/7cAS6mnU1Ep1A=[/tex]试求(1)边际密度函数 [tex=2.286x1.357]HgWPkfzVYF8t95tFu6Yzlg==[/tex] 和 [tex=2.429x1.357]Oxqv4kSQratamp9hJ76bdg==[/tex] (2)[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从区间 [tex=2.286x1.357]t/28KdVrg5JGYKaENU0GEw==[/tex] 上的均匀分布, (1) 求 [tex=2.714x1.214]VfOl/4x2a1odUFLYGB1r5g==[/tex] 的密度函数; (2)[tex=4.071x1.357]t87+3Oz92Z7YepmRXJbOdQ==[/tex].[br][/br][br][/br]
- 设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合密度函数如下,试问 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否相互独立?[br][/br][tex=14.071x2.929]dP4cQckxhVALWt3v5f2JJsiaW51dluc/CKXmOZoHmB2sk5CuBFIarToavG4FumBpKy6Wslqj/5IKhJ88tQNZqGlHcE1uzZ5Kvu3GlP165kZs+OO8fX6LdBJbzZvUqBbj[/tex]
- 设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合密度函数如下,试问 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否相互独立?[br][/br][tex=19.143x2.929]dP4cQckxhVALWt3v5f2JJuv0rK1/4oRLib+lBVFOpJ/EFltn485ABlDuraLEVfRFeveewcKyjprESiGQuG65s7dG0KPm0QIcCUo0rEkNxJX2Oy1B0Cua2YR0RyyrvfyG[/tex]
- 设随机向量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]服从区域[tex=13.429x1.571]JG2W9SJ7hhmceZReER8Zx8d8U1Q9DweFvjG5ygZs1j8iDpWD62II3YE4IcHWvo99P5kYwpLzpgzV5Fp5G3nj+g==[/tex]上的二维均匀分布,则服从均匀分布的是 未知类型:{'options': ['随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]', '随机变量 Y[br][/br]', '随机变量[tex=2.214x1.143]tkk4aXcDoKeg9ZsIAK+yrQ==[/tex][br][/br]', '[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]关于[tex=1.929x1.0]ebYdLVslVpPZa8fPZvS+/g==[/tex]的条件分布[br][/br]'], 'type': 102}
内容
- 0
设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合密度函数如下,试问 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否相互独立?[br][/br][tex=11.643x2.929]dP4cQckxhVALWt3v5f2JJlJLPVbRFfGN4+QgvnFXB4Axb35ZOAm6uFWsnEsBYtDfWJoIKkGW91W2pTaGW8vL+r/+qJjFSZiEboj/LnaT/Dc=[/tex]
- 1
设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合密度函数为[tex=12.929x3.643]s59y2K1bDNChzmHwfrn1oZMscZzqsMzxrepmwWk2KcUQpqKd8yMS9MfWFtdr1CS+4zfy5v+85aA3CBgWf5+U9g==[/tex](1)求常数 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex];(2)试判断 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?
- 2
设随机变量[tex=2.071x1.286]AABPNNktZOJp9yYomaK2LQ==[/tex]都服从均匀分布[tex=3.571x1.286]rfmhMegs7Rz35skc9EX0lQ==[/tex], 且 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立,则随机变量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合密度函数[tex=3.786x1.286]eZxLxr28OnhPAopSzDtO8ftxyg8+LQvxpt18UNAZWRI=[/tex][u] [/u][br][/br]
- 3
设二维随机变量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合分布律如下表所示:[img=244x179]178bfe5bd8b0fd9.png[/img](1) 求关于[tex=2.643x1.286]V55zyFN5uPHuMMgjHwiVXw==[/tex]的边缘分布律;[br][/br](2)[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否相互独立?
- 4
设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合密度函数为[tex=13.214x3.643]s59y2K1bDNChzmHwfrn1oa1pF1t9i55DnlSuYaIvQnQi0naK6GjIdZ7iQEwWX5H2lPkg2lbQIKJXM4qLY0yfKA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数.