下列各式从左到右的变形,属于因式分解的是( ).
A: (a(a-b+1)=a2-ab-a
B: (a2-a-2=a(a-1)-2
C: (-4a2+9b2=(-2a+3(2a+3
D: (x2-4x-5=(x-2) 2-9
E: (A、B、C、D都不正确
A: (a(a-b+1)=a2-ab-a
B: (a2-a-2=a(a-1)-2
C: (-4a2+9b2=(-2a+3(2a+3
D: (x2-4x-5=(x-2) 2-9
E: (A、B、C、D都不正确
举一反三
- 下述断言正确的是( )。 A: $x-1$是$(x^{2}-1)^{3}(x^{3}-1)$的$3$重因式; B: $x^{2}-1$是$(x^{2}-1)(x^{3}-1)$的单因式; C: $(x-1)^{2}$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$2$重因式; D: $x-1$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$4$重因式。
- 下列对二维数组的定义和初始化正确的是( )。 A: int x,a[x][x] = {1, 2, 3, 4 , 5}; B: int a[1][2] = {1, 2, 3, 4, 5}; C: int a[2][2] = { {1, 2}, {2, 3} }; D: float a[][2] = {1, 2, 3, 4, 5};
- 以点\( (2, - 1,2) \)求球心,3为半径的球面方程为( ) A: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- 函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)