举一反三
- 多项式x^4+x^2+1可分解
- x^{15}-1的如下5个因式,哪两个的最大公因式不是常数: (1)x-1.(2)x^2+x+1.(3)x^4+x^3+x^2+x+1. (4)x^{10}+x^5+1(5)x^{12}+x^9+x^6+x^3+1.
- x^{15}-1的如下5个因式,哪两个的最大公因式不是常数:(1)x-1.(2)x^2+x+1.(3)x^4+x^3+x^2+x+1.(4)x^{10}+x^5+1(5)x^{12}+x^9+x^6+x^3+1.
- x^{15}-1的如下5个因式,哪两个的最大公因式不是常数: (1) x-1. (2) x^2+x+1. (3)x^4+x^3+x^3+x^2+x+1. (4) x^{10}+x^5+1 (5) x^{12}+x^9+x^6+x^3+1.
- 用极限的定义证明lim[x→∞](x^2)/(x^2+1)=1
内容
- 0
求不定积分[img=112x35]17da6538063a9e4.png[/img]; ( ) A: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/ B: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4))/8 C: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4)) D: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/8
- 1
解下列不等式(1)(x+5)/2+1>x-3(2)-x/5+2/15≤-1(3)x/3-2<1-x/5(4)x-(3x-1)≤x+2
- 2
不等式4 A: {X|-2≤X<-1或<X≤} B: {X|-2≤X≤-1或<X≤} C: {X|-2≤X≤-1或≤X≤} D: {X|-2<X<-1或≤X≤}
- 3
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
- 4
\({\lim_{x\to0}}\)\({\lim_{y\to0}}\)\(\frac{x^2+y^2+1}{x^2-y^2}\) A: 0 B: 1 C: -1 D: 不存在