多项式x^4+x^2+1可分解
x^4+x^2+1=x^2+2x^2+1-x^2=(x^2+1)^2-x^2=(x^2+x+1)(x^2-x+1)
举一反三
内容
- 0
已知多项式x2﹣px﹣4分解因式为(x+4)(x﹣1),则p= .
- 1
x^{15}-1的如下5个因式,哪两个的最大公因式不是常数: (1)x-1.(2)x^2+x+1.(3)x^4+x^3+x^2+x+1. (4)x^{10}+x^5+1(5)x^{12}+x^9+x^6+x^3+1.
- 2
x^{15}-1的如下5个因式,哪两个的最大公因式不是常数:(1)x-1.(2)x^2+x+1.(3)x^4+x^3+x^2+x+1.(4)x^{10}+x^5+1(5)x^{12}+x^9+x^6+x^3+1.
- 3
用极限的定义证明lim[x→∞](x^2)/(x^2+1)=1
- 4
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)