• 2022-06-07
    一初始状态不为零的离散系统,当激励为[tex=1.857x1.286]2p+SJP2gO0z5hWPrWwpglA==[/tex]时,全响应[tex=10.5x1.286]nL5QMMbBVOaYoBzfQjzM2slj6afq5yyaIM23gDZcE1EiDZU0DQgkXJMzmOLgO0Xh[/tex];当激励为[tex=2.643x1.286]9m3UwjOgJ9yNFvkXlj0Ykg==[/tex]时,全响应为[tex=10.643x1.357]ixMAzzgM2tgqhhFo0c+bNsbbEYphHBb4eHPZQDfT59mwshyMGLO3sYUlzNkKetpe[/tex]。求当初始状态增加[tex=0.5x1.286]7rcVY9u25Rg5EdwYVzpzgg==[/tex]倍且激励为[tex=2.357x1.286]ojNA+oNGLCu5hIRfjKqLgg==[/tex]时的全响应。
  • 若 LTI 系统的初始状态不为零,则其全响应作为整体不满足线性和时不变性。而其零输入响应和零状态响应分别满足线性时不变性。本题旨在阐明这一特性。设激励为[tex=1.857x1.286]2p+SJP2gO0z5hWPrWwpglA==[/tex]时零输入响应为[tex=2.5x1.286]WazjnpxxGMhNJByvOpFgTQ==[/tex],零状态响应为[tex=2.643x1.286]ibs4aW6nO7ovXF57QPFXqw==[/tex],则全响应为[tex=9.857x1.286]0LLqmL7+XhIwyupUm92+SpDonsUiJKwd4FngeRbCWmpXEsZJKv2x8HA5vJuo4Qz0[/tex]当激励为[tex=2.643x1.286]9m3UwjOgJ9yNFvkXlj0Ykg==[/tex]时,初始状态未变,则其零输入响应仍为[tex=2.5x1.286]WazjnpxxGMhNJByvOpFgTQ==[/tex];零状态响应满足线性性质,故其为[tex=3.357x1.286]B7Uwqo+JnOZOl5AxJ3pxN8vnxYW0oy5XqqYgyC39CJ8=[/tex]。所以[tex=9.857x1.286]Xk9C6BN4+7Mtj/jr5B0o+jTXjEqGyYS3v1baCGvd4ZA2mgbSkQAiClQiFApa4NLZ[/tex]。将[tex=4.929x1.286]Re5FirKZwDqPZPtyRGsdsY2UJuoAvV9Ybw1gGYmD6DU=[/tex]联立得[tex=16.857x5.929]fnpmC2J6JmQBLyo5NmGAz9YyNMeehGYr3/RH8VdBStIdUPUswLNdSCAd6iy3oVht9/vwzrJzSjzOScjc8JVe1JIFhT53CTYWRHLQCTMbCSLSwvcE0FTrY904ygwOSwiOCbZcLigu5NR2FgXChIvbho+M89UKQMp8wlZC1MqX+ifcZ5Synn+wwjquswC2rMJWzmd2xAcP61eqyQJ1jH2D744dvw3F5DMYCKRtg36rPCFO3rDWkyKyXMEC/5QyUKF4[/tex],解得[tex=18.286x5.929]fnpmC2J6JmQBLyo5NmGAz9YyNMeehGYr3/RH8VdBStJ2zCl04wcd4NObX3merU56jjIjCftEk5U4kIdrPRWYjfiDW909v061u4ubDHxpn7mEM2CAnI2G/8a1sgeB2krE0oY736Li0Xrt4N6l2LU4p7Cz4Ij4pWxOC/gdS/DXIrKQpACvxwCf3TmLCD+pdLZVgJ0h8NXrDUQMdcTZ5xInP4PvwrJzjn4IamuiXfQZqESjL2ihzfUMixcaKMxb/aJHaSuXn1mQ2tcuqYsHzJB6UJJ10sRg8uI/pg0PJp/FsokTifUGUnJT7PnfVeVkbUOeD+0oX2McrR8ty3kwxX77MA==[/tex]当初始状态增加[tex=0.5x1.286]7rcVY9u25Rg5EdwYVzpzgg==[/tex]倍时,其零输入响应为[tex=3.0x1.286]xFsK0ZY9wvE6m29I+v90zI01fjfF2kMN/T4K32pzo/U=[/tex];而激励为[tex=2.357x1.286]ojNA+oNGLCu5hIRfjKqLgg==[/tex]时,则零状态响应为[tex=3.071x1.286]gZeFDaZyoLPFGaIoZrG5dFpAIg5JlIXAJhKLc6MZmtI=[/tex]。故全响应[tex=10.429x1.286]CY/nGD1cSP0s5BlsJZwxaGAyguq4yi9GHzSA31drnyiUHcoXix4b8BFe3OOsux3Z[/tex]。即[tex=16.786x2.429]jewScD6NiHuFJSbGR3aDNKrfUmSJ1ZRP61n+mNg8RytDK+0mYpcPWt8V4yjIOhWyTVwqpmUQj3DRNh2ry6DlD0lgTn7z2QZwsUAOAjJUrZWmhmkhEaHZKs+Qix5gtmIk55J0kckYAVxZmNXFDDB2fA==[/tex]

    举一反三

    内容

    • 0

      一具有两个初始条件[tex=2.214x1.286]XTyPQq7tKtzFXN8nM+huwQ==[/tex]、[tex=2.214x1.286]CqDoLuAk6RuKC9vqkRYAWg==[/tex]的线性时不变系统,其激励为[tex=1.5x1.286]Xxq5IhoxHwozaRMSBEcUWw==[/tex],输出响应为[tex=1.571x1.286]/zUX+KSPx/G2WrDlkjnl0g==[/tex],已知:(1)当[tex=13.286x1.286]3Gvh5Iv5ie1MViuqe3RPcfiG+b2JsmDBIMvw0YktmfFUPfgepWneuRKGEQy4GCSU[/tex]时,[tex=10.643x1.286]hGuX/cJCbH9oVoTMEX+cbuGKsMUpOzHtNbBU504kcDk=[/tex];(2)当[tex=13.286x1.286]3Gvh5Iv5ie1MViuqe3RPcQlhJEWaE5cus3qB6NJAaNB/BJZjWoSF9CJCwj4kk54U[/tex]时,[tex=10.643x1.286]jsmJCdSvrVseLX9M5/BTI4NLg3mvoagYBlrH0kdwkQg=[/tex];(3)当[tex=14.786x2.786]w6Y2P73vo6EU9k18QXKHlli8r+2BFamPDzXfwEQpOuSS8PsPp9N4u2CzEuxkynAGmvP+x18LMeZZ+dNkUGbjlk4yqzhuZuQGcWQs6Q49Y6/s9Car4F3323jnZBE/dTb1[/tex]时,[tex=10.143x1.286]OTyBCcNJHTV1UdMtNfM+0qsZrpe3jooa1kX5FzYmI1w=[/tex]。求[tex=7.286x2.786]w6Y2P73vo6EU9k18QXKHlsDEvwP0IAdZbKaILmoK4R96E/NHEnfT2XlQH9n3LGr7qotsmBCmFppa6mDnDQB+7VTaZoMqNo2xZOcilBntTOg=[/tex]时的零状态响应。

    • 1

      线性时不变系统,当激励信号为[tex=4.429x1.357]sy7ueaPbrLiBHQH150iv/VZktXF77BF2cSj+gTrSAfU=[/tex]时, 全响应为[tex=8.429x1.429]SP19JnXhjKphC7pilOEvFJxC38CDWU1Hx602TzT0oqZnCfL9VhWeK3dS/0vNr1pN[/tex]当激励信号为 [tex=4.571x1.357]OoR2mVOmU3xEE0kp8kUGuw==[/tex]时,全响应为[tex=6.286x1.429]h5RxWq97xIE6cCy9+PQQau8NRppqdUaQbHDdl7YLJ2s=[/tex]。求系统的冲激响应[tex=1.857x1.357]CsQ4xao7R+g15V+3SUni2A==[/tex] ( 两种激励下,起始状态相同)

    • 2

      已知系统阶跃响应为[tex=6.0x1.571]WVnfT1g3HMML2TrLs+fQwDcvuazebKVBCN+cAzGwCsx+Tu2HRkX/X4CxZ4StEyOM[/tex], 当加入激励信号 [tex=8.214x1.5]CBDnj1lVnlT1R5y+TyiRK4yxgV0QY+BOB+dunRgXet+umL3Ci2yvZRyaiA4Cg7s0[/tex] 时,求系统的零状态响应。

    • 3

      设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.

    • 4

      某系统的激励 [tex=4.857x1.357]5CdtK7Ule7tljzOX7No8Uw==[/tex], 当系统的响应 [tex=10.071x1.429]T8vgL7yhj70kZ7D4DM63vV4hsdngg5MXGfqXAhwy6Js=[/tex] 时,求(1) 系统的传递函数 [tex=2.071x1.357]VfXkm16UksWI6jvvzuQO+A==[/tex];(2) 系统的脉冲响应函数 [tex=1.643x1.357]dVY93ll8VMQ0iaNbw05kQQ==[/tex];(3) 系统的频率响应函数 [tex=2.643x1.357]9q/GaqjDz8m8WNmLWrkBzQ==[/tex].