设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵, 求证: 存在一个正数 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex], 使得对任意的 [tex=4.071x1.071]h4VbZNZvyXu5KIwzhg2oGw==[/tex], 矩阵 [tex=2.786x1.214]iZY/OApfFHT6uKNCbpplUQ==[/tex] 都是非异阵.
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是半正定阵的充要条件是存在同阶实对称矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使得 [tex=2.786x1.214]or70cFxB56GcrSSRwtcDrw==[/tex].
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 若存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=4.143x1.286]YCUl/vNcR5SNlwwslg9Jhb5CY//bqvCw+mSVvBQx12Q=[/tex] 是正定阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为非异阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正定阵的充要条件是存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶非异实矩阵 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex], 使 [tex=3.286x1.143]Ys46PWl0/Kt6EeuPQmIYUVrqckiP2yTAu4+gPWxyAI8=[/tex];
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:(1) 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl/jgx7HDqG8OMKcZZrhVcXy6+JovSSXitpjCbh6SDQEN[/tex](2) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为半正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶半正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl8wUbDZMgCOnJA1lQifZKR+Dh2C+JkyFhRzqn66dyW91[/tex]
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵,证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是反对称矩阵,当且仅当对任一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量 [tex=1.143x1.214]v57PrtvcRANvjTjSZkCHmQ==[/tex] 有[tex=4.5x1.214]7kFxBTR/JmxkA2BxZVmmrA==[/tex]