求序列 1, [tex=1.357x1.286]2Oqnvk8inpxSqRgZk67Tkg==[/tex], [tex=1.429x1.429]aq03HgZdx0OT5+A+xa9XJg==[/tex], [tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex], [tex=1.5x1.357]/auLSCwRGY7bnyPck4JGCQ==[/tex], [tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex] 的最大项.
举一反三
- 设向量组[tex=1.071x1.286]pWE6wju4u8fPNU7ACnOUQHLeZNVAdSH/I6vNZLZGzWg=[/tex],[tex=1.071x1.286]JGq/5/Kh4u/M938ZQm31Chbw+GLwp2eDbQ5S+yzPRr0=[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex],[tex=0.929x1.286]Ff8PJr0vif92Cy4pi5zjsXNsBLAtsgBLgvGGr1gK+KY=[/tex]与向量组[tex=1.071x1.286]pWE6wju4u8fPNU7ACnOUQHLeZNVAdSH/I6vNZLZGzWg=[/tex],[tex=1.071x1.286]JGq/5/Kh4u/M938ZQm31Chbw+GLwp2eDbQ5S+yzPRr0=[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex],[tex=0.929x1.286]Ff8PJr0vif92Cy4pi5zjsXNsBLAtsgBLgvGGr1gK+KY=[/tex],[tex=1.857x1.286]BfplC3qdmMIuR9ktapG5oimLVgqI3Q2kb4TqtCnVJ9k=[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex],[tex=1.0x1.286]K7Gmg5Cgo+HS/qEv7bZhTFh2fUxkbcP/SryOO1HoJnA=[/tex]有相同的秩,证明:[tex=1.071x1.286]pWE6wju4u8fPNU7ACnOUQHLeZNVAdSH/I6vNZLZGzWg=[/tex],[tex=1.071x1.286]JGq/5/Kh4u/M938ZQm31Chbw+GLwp2eDbQ5S+yzPRr0=[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex],[tex=0.929x1.286]Ff8PJr0vif92Cy4pi5zjsXNsBLAtsgBLgvGGr1gK+KY=[/tex]与[tex=1.071x1.286]pWE6wju4u8fPNU7ACnOUQHLeZNVAdSH/I6vNZLZGzWg=[/tex],[tex=1.071x1.286]JGq/5/Kh4u/M938ZQm31Chbw+GLwp2eDbQ5S+yzPRr0=[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex],[tex=0.929x1.286]Ff8PJr0vif92Cy4pi5zjsXNsBLAtsgBLgvGGr1gK+KY=[/tex],[tex=1.857x1.286]BfplC3qdmMIuR9ktapG5oimLVgqI3Q2kb4TqtCnVJ9k=[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex],[tex=1.0x1.286]K7Gmg5Cgo+HS/qEv7bZhTFh2fUxkbcP/SryOO1HoJnA=[/tex]等价.
- 证明:若[tex=2.643x1.286]nv6NhtDNDbysyda3AlZw3Cp/C/9nIh+SzRyJ2ioFi9w=[/tex],则必有[tex=3.786x1.286]uJsV9OpDt4XzF5iH1KHjt1DLj3eU78NAyd0FfjUtnHE=[/tex],[tex=2.357x1.286]b9GUEP96aCX9AclOEgSdgg==[/tex],[tex=1.214x1.286]gYTgRQ9fU02e0d0EGUXE2A==[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex].
- 设[tex=2.071x1.286]ppSeSenXe1UVnNGbr2NR7g==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]次多项式函数。 证明 :1)若 [tex=2.0x1.286]kK7MVHZcJaDHzaBVACerVA==[/tex],[tex=2.286x1.286]IPZi8qKS5UDFR6X3lDed7jLwrgHecuCZb7aJM44OaU8=[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex], [tex=3.143x1.286]xJuo6JEe+uecVsrFwzREoA==[/tex]都是正数,则 [tex=2.071x1.286]ppSeSenXe1UVnNGbr2NR7g==[/tex]在[tex=4.357x1.286]4flf87BM3DWTVk/Miz/rSa28i4GGrxj0nq+RuFPaMAw=[/tex]无零点;2)若 [tex=2.0x1.286]kK7MVHZcJaDHzaBVACerVA==[/tex], [tex=2.286x1.286]IPZi8qKS5UDFR6X3lDed7jLwrgHecuCZb7aJM44OaU8=[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex], [tex=3.143x1.286]xJuo6JEe+uecVsrFwzREoA==[/tex]正负号相间 , 则 [tex=2.071x1.286]ppSeSenXe1UVnNGbr2NR7g==[/tex]在[tex=4.071x1.286]GPkpTB6O4hCCD3/4lWteJ/eqmeNaPIoQa2wSfsV8DyahtLQ8SRbVSdF0KdYhUzCE[/tex]无零点。
- 某人对商品x的需求函数是[tex=5.214x1.214]0m6eBd5eyK0NjuxeKfwtIw==[/tex],[tex=4.214x1.214]I717YsPbj8Rnym1v2XQ+sFNkUl7mqUsGwbjwjXmy2xc=[/tex],这里[tex=0.571x1.0]Za328cIB4SeR7rrzY+MM5Q==[/tex]是[tex=0.571x0.786]ZSLOI4fiO1oAbVC5M8IVkA==[/tex]的价格。如果商品x 的价格是0.5元,那么他对商品x的需求价格弹性是 未知类型:{'options': ['-10', '- 1/5', '-1/10', '\xa0- 1/3'], 'type': 102}
- 设[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为[tex=0.5x1.286]XgTIkslIRkUR8ajnRk2deg==[/tex],[tex=0.5x1.286]7rcVY9u25Rg5EdwYVzpzgg==[/tex],[tex=0.5x1.286]AO16NTt3MKb6K8RJQb3PEw==[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex],[tex=2.286x1.286]CY/t/zHSXE44g5Siy+8P+g==[/tex],证明[tex=3.214x1.286]WdtL5ldD2gLV4ikqHWD7bg==[/tex]为可逆矩阵.