设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]矩阵,证明:[tex=10.357x1.286]0/r0pDIsK4Iwlhjz7RpEUXSCNX4DRPbQI5NoRfzCFDQO30e+2J5I6u1+t0V+tM1S[/tex].
举一反三
- 证明:(1) 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为矩阵,则[tex=4.286x1.286]oheUYwhZ0URiNEpsN7L7kA==[/tex]有意义的充分必要条件是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为同阶矩阵。(2) 对任意 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] , 都有[tex=6.286x1.286]f9BmKY0KXh740nvID3nNj0fFKPsoX9X3zKZONqYCrR0=[/tex], 其中[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]为单位矩阵。
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]实矩阵,且[tex=6.714x1.286]aPLEhUiQkcWLir1KKUCILnJPLws3VnsgPGfLJuAK/YI=[/tex] . 证明:当[tex=2.357x1.286]aKg49BUpv3BWm3erigiDBw==[/tex]时,矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为正定矩阵 .
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]实矩阵,且[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩[tex=3.857x1.286]Wa3gudbAEmsHT1iIhD91Ug==[/tex],证明[tex=2.071x1.286]t4LAURrctFIgPiUiJ+kFXA==[/tex]为正定矩阵.
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是任意二事件,证明:若事件[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]相互独立而且不相容,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]中必有一个是0概率事件.