设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]实矩阵,且[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩[tex=3.857x1.286]Wa3gudbAEmsHT1iIhD91Ug==[/tex],证明[tex=2.071x1.286]t4LAURrctFIgPiUiJ+kFXA==[/tex]为正定矩阵.
举一反三
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]仍为正定矩阵.
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]实矩阵,且[tex=6.714x1.286]aPLEhUiQkcWLir1KKUCILnJPLws3VnsgPGfLJuAK/YI=[/tex] . 证明:当[tex=2.357x1.286]aKg49BUpv3BWm3erigiDBw==[/tex]时,矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为正定矩阵 .
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]矩阵,证明:[tex=10.357x1.286]0/r0pDIsK4Iwlhjz7RpEUXSCNX4DRPbQI5NoRfzCFDQO30e+2J5I6u1+t0V+tM1S[/tex].
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]矩阵,[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶可逆矩阵,矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为[tex=0.5x1.286]/r3Eij8VRNC5JxYjlQuXEQ==[/tex],矩阵[tex=3.643x1.286]CpWvtjB9ucL4E7miF0UQAA==[/tex]的秩为[tex=0.857x1.286]H03VD4SCKfotrcFsRV+kxg==[/tex],试证[tex=2.571x1.286]mAwH6XLdj9fI3H5wSTziWg==[/tex].