• 2022-06-08
    试建立分别具有下列性质的曲线所满足的微分方程,并求解。(1)曲线上任一点的切线的纵截距等于切点横坐标的平方;(2)曲线上任一点的切线的纵截距是切点横坐标和纵坐标的等差中项;
  • 设[tex=2.857x1.357]0AgIVPdbJCdH5C16+/fatg==[/tex]为曲线上的任一点,则过[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]点曲线的切线方程为                               [tex=6.929x1.429]ewuYiduHbwYGBTjLOlhcE8HNWKeKgSymBNuDqhmRHbs=[/tex]从而此切线与两坐标轴的交点坐标为[tex=10.143x2.786]Z9lPpLT39/Ja6/ENW8Xv9hRqaxyCGjLxENreEXzv1YX1A3zJsYPWfVwz9aRqeec8LiPH0iChrd1hRURVn/1CZvHdx5VhQqU0vqP1KvUAOWU=[/tex]即  横截距为  [tex=2.571x2.357]EXPUCXgUWUV797r+7XqU/J6uHW81WnOEgo6n4w1JlZ0=[/tex],纵截距为  [tex=2.643x1.357]+p8I1sartmlm6AYdDbUcehu1rkIqNSqtLR9Z05CW7dc=[/tex]。由题意得:(1)[tex=4.929x1.5]hvy0kO/lV+UttrQq7dVbtg==[/tex]方程变形为                   [tex=5.643x4.929]PEoSYoPDWAitNvfrZcmwhpMMVhP2YQVzpWizULJiVwSO8StuyQd7b3R2mh3p8zSW9InR4GEBit5zyk/09ANa4A==[/tex]于是     [tex=14.929x2.786]gMnEwgeSC6eqXixw58ZijpDkP1hO1vvjfzSUTWVFV60BHl1rtaYbwYBGCRqnbpwRpCIfpaC+IK/FVJz36oXDIrIJjescZlREMCExJOepaveafbEXoEV6Fon1Z/7P1/kk[/tex]       [tex=13.214x11.214]B4HEfx07aTLdd+734HRHIGB5kBbdy80p2KP7eXrMDQNncZ3Dw3aBohGf6iDfVDngIkPgO2xBnov2qdHUs4MZ4xvzk2n2QmN8mfLfas745BumnsxHpKBbo9NwFkYSFi3+agzamPdMcfeTn62jnhhxoMhiOct208iToWtwQUp4NCxp9k6+BlTRhqA+yh0lVWUZWEz48/4zrtC3Xhs3JER5XfpxBhUPQ/JorKKnw1juhLQ3+h3Cqs4vrYBKQVXwiv4A[/tex]所以,方程的通解为 [tex=5.786x1.429]dUjOVlySNjtJeYUVgccX8Q==[/tex]。(2)[tex=6.5x2.286]zmqqC26Ie8cyA7SFU5kuS6WrbPbY7W0rhkPrnVih3pc=[/tex]方程变形为                 [tex=6.357x4.929]PEoSYoPDWAitNvfrZcmwhuR/bopzz100CYK6Zyom3jni4I/W8Z+FZ7DRbuejHvHG1JkWAs8qH3XZLQd5jVxMQ9mxgyq1M0SReiQhaa668D5teFoN02jqGz/qthxqQn7t[/tex]于是         [tex=16.786x2.786]gMnEwgeSC6eqXixw58ZijgO23KG8inozoP95rHxkBDlngi+v26Cqy+pRvdMwPCysk25O8BeBZyzPOWsteRe41NETZmEW5gtDOgnM1OGTGrB1tufotzql2i/v4AdQ6ZisKea9BW0LZh8ZQR4QfYetVg91cLwPKISctYQFDcJ27FY=[/tex]                  [tex=15.571x12.214]RqtJzdlcfK4TX02LzjRE/nW4ekHNR3J3mSHwv7qZW+XXQMDO2Eup2f++ogziVfHYNdjiOA7G05HDZOd3HrFWKn39yM2svDfpP/4O7GPghVY7nn9/8WV5llcAUb5tt125lDC9wJhY8yOs9V9NwTgeu0cQrYfgZEFpeHuEDBWSggOlG5YToyKxXoHwesz2Qaw2yhBZiVvTl8mN+9JIjXotPJB4EMqocmWcDxPgNYziqlSS+wOekxhA6EYmPvu9qrmTVYGDosa8JOjteEYADyu4NG5uNt8f8w9q4TT89HAS7POwf9vDphLV1ooBgVYf9cNo4+9jsHdiDwH8EveYscxfkz30AOwKkYRR24GLCFBtUVlzjyDAJmCJaTriKp1HooqLJU1c/oFICIK67RVAs/ixhCpQGmj99Ml62ewoqT5B49Yw6N63fxAXSl5504qfP8OAfSjsN3EN1I7WbsmCdgm0CCXyYWc5C3uV+GxpHrOGqe4KdQ6BQBPeljma38yZ39no[/tex]所以,方程的通解为 [tex=5.857x1.571]D0sM+DGlpBTrVpnOMi1pZOcpvQNdwo4aO84Ng7vJR2c=[/tex]。

    内容

    • 0

      曲线上任一点的切线的纵截距等于切点横坐标的平方,则该曲线所满足的微分方程为( ). 未知类型:{'options': ['', ' [img=70x24]17e0ab934afdca3.png[/img]', ' [img=41x22]17e0ab9354c5adb.png[/img]', ' [img=77x24]17e0ab9360299d3.png[/img]'], 'type': 102}

    • 1

      曲线上任一点处的切线的斜率都等于切点纵坐标的平方,且曲线通过点,该曲线方程为【 】5597fb2ce4b0ec35e2d5b61b.gif85ee2ce37af14a416779f0dea3fdd0aa.gif

    • 2

      写出下列条件确定的曲线所满足的微分方程.曲线上任一点[tex=2.143x1.357]31CzVDPWEEnJrSJJlGK6fQ==[/tex]处切线斜率等于该点横坐标与纵坐标的乘积.

    • 3

      求一曲线,使其切线在纵轴上之截距等于切点的横坐标。

    • 4

      一曲线过点 [tex=2.286x1.357]IznYKk7kywvI5iLU+xoABA==[/tex],并且在其上任一点的切线斜率等于横坐标的倒数的两倍. 试求该曲线的方程.