设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维内积空间, [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的线性变换, 求证: [tex=7.429x1.5]Hxr+WAd0pdX8wRxoSXYGR3do9fEtDlh1/HAxD3DUXhGMjAefuLUvVoRdEHJyjLhXFlycXQ3p2whuN5XqXwrP+wAqj43ADjVBq9YjRHMLZEY=[/tex]
举一反三
- 设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]上的线性变换. 若 [tex=5.857x1.571]dlZn1WdSEhJnaQfjAzNay4TIfH54naq98zpD0G+3eAkJyYIeoNhzJVa9bCG6MTbl[/tex], 求证:[tex=7.643x1.214]iIotIX85I058AY0uMJSgutb/w8njTH7pkPuwY+U+zsSq9GX9CZ5GdUR1DP9/bnrfyL43/k2euqbFlcouGaGC1fWgQxGgvK0rtaRkzWb+Kxc=[/tex]
- 设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的幂等变换, 则 [tex=3.786x1.143]g7yEE1/54EdcTtD+Ulyqgg==[/tex], 其中 [tex=9.929x1.357]GXvcLYcEec63tHprym0REZjeKWU9JkS0+Nu2aB5hdCAT1jXQNyg1XKO+2qAtWa6PB7V9NrOG0KvuMLzrdVLEof5btMZenNIEVGmt1slnMno=[/tex], [tex=10.357x1.357]2PwUz7bniD3tYBcNY0qvx6X7+7JQa/YaTlLwIJOzNZwQoqJKCloNs5SZHd5MKvOfnRu/5ekq96gJsujT0beCUPLhBg0UcDNGEYYQ+v0Xg0A=[/tex], 且 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 就是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 上的投影变换.
- 设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的线性变换, [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一组基下的表示矩 阵为对角阵且主对角线上的元素互不相同, 求 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 的所有不变子空间.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量空间, [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]及 [tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex] 是其上的线性变换, 求证:[tex=16.5x1.214]79Wd/JsaQKi3RBB3vwr832ZyBiTlGz3KhRn1+2YPkL6yUB0ieAOQC9LqcKUw+EQQSHzmVflmQkONNKd31hGxPnwq6awd7WhqKBBunapLAIaDjwaRAnAyGoFEzJW5C+5znhHHY4hIBM4Hk+2WMheVTN90C6lXzT4S0lm8W8IS+pX6huiMQYwj8ui94BM0NlvmvKO49KulM0+TUlQrxy+jtaqFFo2sskhBAqWAA36Y6iY=[/tex]
- 设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到线性空间 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的线性映射, 若 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数大于 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的维数, 求证: [tex=4.571x1.214]Cl7XURcasfWz8MoFQ30+5S5YVL54FJHuW95WWrFaWxE=[/tex]