函数[tex=2.429x1.357]HahJs8lvA4tV0CFg1fYnxw==[/tex]在区间 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上可积,是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上可积的
A: 必要条件
B: 充分条件
C: 充分必要条件
D: 无关条件
A: 必要条件
B: 充分条件
C: 充分必要条件
D: 无关条件
举一反三
- 函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续是在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上可导的( ) 条件. 未知类型:{'options': ['\xa0充分', '必要', '充分必要', '无关'], 'type': 102}
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上一有限函数,那么下列两件事等价:(1)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上满足 Lipschitz 条件,(2)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上某个有界可积函数的不定积分.
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]反常积分存在 (可积), 证明:[tex=2.857x1.357]uI+/CfRHSY2ObD5dAsb69g==[/tex] 在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]可积的充要条件为[tex=2.429x1.357]HahJs8lvA4tV0CFg1fYnxw==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]反常积分存在 (可积), 并且此时成立[tex=12.286x3.0]kPpkd7IjIVrbl5Xbg3hzqyQUxzsPz3gkbscBB4OIWxAxj4q0pLdDrFmTwfqajHeIa5jn0dN8pUVPi7gLuu0fuA==[/tex]
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上一有限实函数,那么下列两件事等价 :(1) [tex=1.857x1.357]QwcZRP/k6GQjt3RgosTUtg==[/tex] 在 [tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 上满足 [tex=4.214x1.214]GhIKRZ36/tUBZOCVzb56Tg==[/tex] 条件;(2) [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上某个有界可积函数的不定积分.
- 函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续是在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上可导的