设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上一有限函数,那么下列两件事等价:(1)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上满足 Lipschitz 条件,(2)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上某个有界可积函数的不定积分.
举一反三
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上一有限实函数,那么下列两件事等价 :(1) [tex=1.857x1.357]QwcZRP/k6GQjt3RgosTUtg==[/tex] 在 [tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 上满足 [tex=4.214x1.214]GhIKRZ36/tUBZOCVzb56Tg==[/tex] 条件;(2) [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上某个有界可积函数的不定积分.
- 如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上有界.
- 函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续是在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上可导的
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续, 且 [tex=7.357x1.357]uDZognCYe2c/zRuokcdW2HBjR3D/FFsKyFLSnT+mmSc=[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上恒正或恒负.
- 证明: 若闭区间 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的单调有界函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 能取到 [tex=1.857x1.357]+oWS0hM0HogLU9xbRXppWQ==[/tex] 和 [tex=1.714x1.357]6GTYhzmnTgdXYb7xz1/D/Q==[/tex] 之间的一切值,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的连续函数.