判断矩阵[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWoGNXAqhwZEepcy9qfmUbiWDJnvaw1HUbQJlFz+L49mtT9iDWk27vO2YRwDxh+BISkluY5BVmrMtR5s/G5H9KZrslL5g7D0e2NZAJythvdiY[/tex]是否与对角矩阵相似;若与对角矩阵相似,求一个可逆矩阵 [tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使[tex=3.357x1.286]QehgMsIi+Hsdet9OihqiWQ==[/tex]为对角矩阵。
举一反三
- 判断矩阵[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWlzdxT+GgGCAXLAVyqZsgVpJUuQD9vunAJguTgz65pUM6A2Ttd8uTrC4ww4v79AVwz6DiygFPO3JAj1F04/3E75E3gAfyap35Dj6OfEka8Gz[/tex]是否与对角矩阵相似;若与对角矩阵相似,求一个可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex] ,使[tex=3.357x1.286]QehgMsIi+Hsdet9OihqiWQ==[/tex]为对角矩阵。
- 下列矩阵是否与对角矩阵相似?若相似于对角矩阵, 求 [tex=0.714x1.286]BMKsEVFNvpiLV0UsqDFXCw==[/tex] 使 [tex=3.214x1.286]1sFdXzzqHCc4qLXdM8ki4Toicy90dsQBVNzF4LK8JX8=[/tex] 为对角矩阵.[p=align:center][tex=7.643x3.643]jcCMHflCR8OS9TosV6N5vOctec2onkOcL9XnUGJeWh3qZvNBVS19uWfWoa27zjItImNPL8uNa0phPgzXQflWtOjTca6POSzC/6aw9Mb1ufgt2EhgbEapGat2bi6egr0h[/tex]
- 下列矩阵是否与对角矩阵相似?若相似于对角矩阵, 求 [tex=0.714x1.286]BMKsEVFNvpiLV0UsqDFXCw==[/tex] 使 [tex=3.214x1.286]1sFdXzzqHCc4qLXdM8ki4Toicy90dsQBVNzF4LK8JX8=[/tex] 为对角矩阵.[p=align:center][tex=5.357x2.786]jcCMHflCR8OS9TosV6N5vFWjToaaWqOOGqoRSEmRakI8euajTYJW+cFHO0sg+D0a+NjWo5p5K3fsrlwkGSJ1tg==[/tex]
- 下列矩阵是否与对角矩阵相似?若相似于对角矩阵, 求 [tex=0.714x1.286]BMKsEVFNvpiLV0UsqDFXCw==[/tex] 使 [tex=3.214x1.286]1sFdXzzqHCc4qLXdM8ki4Toicy90dsQBVNzF4LK8JX8=[/tex] 为对角矩阵.[p=align:center][tex=7.857x3.929]jcCMHflCR8OS9TosV6N5vNF0Ht7EtBbeDLHluhYHejByT6aLXCSmkH2ygZWvIirihyGjHbIbgSgvxDJ9x8yJnPuBRfs11OT98H/vffeQswT2hcIZl8u2tnvwMLBc2tWO[/tex]
- 下列矩阵是否与对角矩阵相似?若相似于对角矩阵, 求 [tex=0.714x1.286]BMKsEVFNvpiLV0UsqDFXCw==[/tex] 使 [tex=3.214x1.286]1sFdXzzqHCc4qLXdM8ki4Toicy90dsQBVNzF4LK8JX8=[/tex] 为对角矩阵.[p=align:center][tex=8.429x3.643]jcCMHflCR8OS9TosV6N5vE+ILInEdrNZmLPdu5yGc5/18+5aCmsneZxFXusbuAuha4wP72KXmMNlXiSam9ZCne7eGxoMSgWv1D5AVzaLGiLdEc5nMyQ+BIIQfiUWSvJU[/tex]