下列矩阵是否为正交矩阵? [tex=7.643x3.643]075gCzZzsMRb6HYXYk9X93oP9VTAfKrAYbsu76C9035zlsFjjzrjuwZ8U9MA8lOp9IN8rYXpo98i5Gznhqf3CEN1ztaS3ixA2QRlTNbnr83QJuMF8Ckqo185aSTiF5Xl[/tex]
下列矩阵是否为正交矩阵? [tex=7.643x3.643]075gCzZzsMRb6HYXYk9X93oP9VTAfKrAYbsu76C9035zlsFjjzrjuwZ8U9MA8lOp9IN8rYXpo98i5Gznhqf3CEN1ztaS3ixA2QRlTNbnr83QJuMF8Ckqo185aSTiF5Xl[/tex]
求下列矩阵的逆矩阵.[tex=7.643x3.643]jcCMHflCR8OS9TosV6N5vJNyIP83+Tb+gbe85j7Z7X3SLhjNF5J5QaSWMcJv02L3VkQ1GOWQYVdQuOSBprbgICx1eKMiCCwcL7DvUN9Wo2f/6FvpTEJm+J1WidM/fIjf[/tex]
求下列矩阵的逆矩阵.[tex=7.643x3.643]jcCMHflCR8OS9TosV6N5vJNyIP83+Tb+gbe85j7Z7X3SLhjNF5J5QaSWMcJv02L3VkQ1GOWQYVdQuOSBprbgICx1eKMiCCwcL7DvUN9Wo2f/6FvpTEJm+J1WidM/fIjf[/tex]
设[tex=6.071x1.5]t1pYf9qf5/ihmDkdtVPbxgHsexejLjffuuBvt433/J9fiH0AFM3yjagd20CpqK5N[/tex], 矩阵[tex=3.714x1.214]ysPsVBYgue2sVzMz/Uq3u9MOSas8wf/hfxWMCVVgJOfrBZc3L4E57/A7K5Y0d0qI55ANETVRJSlSmLFbJRXkuFrzvFGETxkkfNYWLLAL4iI=[/tex], [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]为正整数 , 则[tex=3.643x1.357]Xrp+PAV2XFWZXx2rIlYNYnUJR6h1p7j7v56UyJwpU+LESViAO9ieMQ60jsstShhJ[/tex] 未知类型:{'options': ['[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWjufbxiajwUdrPcrqqjIMonmpHH1xXo55SkGPJITE9OJR87HEr/h3Qh0bKhsxxuOfzC79BBbRBaj27LR1r7VhyKm5wF3X8BIIk0T6NoEmEv6[/tex]', '[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWoMxHIR/1XfrXjo2Jq1xXfJIsIB91jj3U0nQA3BInb/wR24rVLMStlys+gDhytCanNahX2z5PYAbLP6wq8WpYXG6Art06Ko/+UlhVpyKnCuH[/tex]', '[tex=8.643x3.929]jyVOORWehIbTNQvvtYroWjufbxiajwUdrPcrqqjIMokzvmqQkldaggYjo8oiVtGZvON1P8yhKBRJhxCckSKsMsCBqQuH2gGjNWLT+sjL96m+zEGWPyClJFvzM6N0Rgiv[/tex]', '[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWosXJpCbkhmesMGQqlFE0w1ysJP/3Kid2+4PW7cXFVHAHcSBcgYfLh9w14wS0vCrKcY+pytsn48XYsTutur4XBM5QV2bWhyu++eKfZXaOrZB[/tex]'], 'type': 102}
设[tex=6.071x1.5]t1pYf9qf5/ihmDkdtVPbxgHsexejLjffuuBvt433/J9fiH0AFM3yjagd20CpqK5N[/tex], 矩阵[tex=3.714x1.214]ysPsVBYgue2sVzMz/Uq3u9MOSas8wf/hfxWMCVVgJOfrBZc3L4E57/A7K5Y0d0qI55ANETVRJSlSmLFbJRXkuFrzvFGETxkkfNYWLLAL4iI=[/tex], [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]为正整数 , 则[tex=3.643x1.357]Xrp+PAV2XFWZXx2rIlYNYnUJR6h1p7j7v56UyJwpU+LESViAO9ieMQ60jsstShhJ[/tex] 未知类型:{'options': ['[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWjufbxiajwUdrPcrqqjIMonmpHH1xXo55SkGPJITE9OJR87HEr/h3Qh0bKhsxxuOfzC79BBbRBaj27LR1r7VhyKm5wF3X8BIIk0T6NoEmEv6[/tex]', '[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWoMxHIR/1XfrXjo2Jq1xXfJIsIB91jj3U0nQA3BInb/wR24rVLMStlys+gDhytCanNahX2z5PYAbLP6wq8WpYXG6Art06Ko/+UlhVpyKnCuH[/tex]', '[tex=8.643x3.929]jyVOORWehIbTNQvvtYroWjufbxiajwUdrPcrqqjIMokzvmqQkldaggYjo8oiVtGZvON1P8yhKBRJhxCckSKsMsCBqQuH2gGjNWLT+sjL96m+zEGWPyClJFvzM6N0Rgiv[/tex]', '[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWosXJpCbkhmesMGQqlFE0w1ysJP/3Kid2+4PW7cXFVHAHcSBcgYfLh9w14wS0vCrKcY+pytsn48XYsTutur4XBM5QV2bWhyu++eKfZXaOrZB[/tex]'], 'type': 102}
判断矩阵[tex=7.643x3.643]jcCMHflCR8OS9TosV6N5vLrXTRZC+LPms/3AHCc/20xMDGXAPjhaVcvJrcz0ymRqw57MUGf81i3Y/S1fVUzFaHnghIxD+lvyY+z4UkF6AWcZidg0o08q9tHEbgE+ZU3j[/tex]是否为对称矩阵或反对称矩阵。
判断矩阵[tex=7.643x3.643]jcCMHflCR8OS9TosV6N5vLrXTRZC+LPms/3AHCc/20xMDGXAPjhaVcvJrcz0ymRqw57MUGf81i3Y/S1fVUzFaHnghIxD+lvyY+z4UkF6AWcZidg0o08q9tHEbgE+ZU3j[/tex]是否为对称矩阵或反对称矩阵。
判断矩阵[tex=7.643x3.643]jcCMHflCR8OS9TosV6N5vKvfN8t81BMYZ419g6rrTOmWvDuq1xWU7rOg+aQZwWB9hCcBfKCWm390UvWd9qsa6jrUF5CO/Av6j4SJ/eVIXA/8jh9TC1QjQlccMfJS8+va[/tex]是否为对称矩阵或反对称矩阵。
判断矩阵[tex=7.643x3.643]jcCMHflCR8OS9TosV6N5vKvfN8t81BMYZ419g6rrTOmWvDuq1xWU7rOg+aQZwWB9hCcBfKCWm390UvWd9qsa6jrUF5CO/Av6j4SJ/eVIXA/8jh9TC1QjQlccMfJS8+va[/tex]是否为对称矩阵或反对称矩阵。
用初等变换法求下列矩阵的逆矩阵.[p=align:center][tex=7.643x3.643]075gCzZzsMRb6HYXYk9X9+LhKwEfeQLUt/9zH8jmuN4Jh7g6rvzwwynnjhPEJZjdft1o04KIcC1kfEAiSNvWC9sF5EYxYsmHEnUEDnxylgAcJ7V7Qw4KLEACC4FcHls1[/tex]
用初等变换法求下列矩阵的逆矩阵.[p=align:center][tex=7.643x3.643]075gCzZzsMRb6HYXYk9X9+LhKwEfeQLUt/9zH8jmuN4Jh7g6rvzwwynnjhPEJZjdft1o04KIcC1kfEAiSNvWC9sF5EYxYsmHEnUEDnxylgAcJ7V7Qw4KLEACC4FcHls1[/tex]
利用矩阵的初等行变换判断矩阵[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWtJ8CQLQibo8XMPtKpFG2JfoDz+bv+MP3yEEsEQOL1nn8AtYZGlQY9OA0snupwTwRKOi4qknka5KGQcIc2/RCBFJDZ/Q3T7opCYZ8SywniO+[/tex]是否可逆;如可逆,求其逆矩阵。
利用矩阵的初等行变换判断矩阵[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWtJ8CQLQibo8XMPtKpFG2JfoDz+bv+MP3yEEsEQOL1nn8AtYZGlQY9OA0snupwTwRKOi4qknka5KGQcIc2/RCBFJDZ/Q3T7opCYZ8SywniO+[/tex]是否可逆;如可逆,求其逆矩阵。
用初等行变换将矩阵化成行阶梯形矩阵和行最简形矩阵:[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWtJ8CQLQibo8XMPtKpFG2JfoDz+bv+MP3yEEsEQOL1nn8AtYZGlQY9OA0snupwTwRKOi4qknka5KGQcIc2/RCBFJDZ/Q3T7opCYZ8SywniO+[/tex]。
用初等行变换将矩阵化成行阶梯形矩阵和行最简形矩阵:[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWtJ8CQLQibo8XMPtKpFG2JfoDz+bv+MP3yEEsEQOL1nn8AtYZGlQY9OA0snupwTwRKOi4qknka5KGQcIc2/RCBFJDZ/Q3T7opCYZ8SywniO+[/tex]。
求下列矩阵的特征值和特征向量.[tex=7.643x3.643]075gCzZzsMRb6HYXYk9X9yD1hAmtvBJ6+FZJhinzU/YixR0pcINNPybaF0HKSAvA4/uRV7cNaIQJgmJa5d4NHDPGy09MeSc7R9NDjrit2apCBP1F59aSzcXeFx8fTMft[/tex]并问它们不同特征值的特征向量是否两两正交? 它们是否可以相似对角化?
求下列矩阵的特征值和特征向量.[tex=7.643x3.643]075gCzZzsMRb6HYXYk9X9yD1hAmtvBJ6+FZJhinzU/YixR0pcINNPybaF0HKSAvA4/uRV7cNaIQJgmJa5d4NHDPGy09MeSc7R9NDjrit2apCBP1F59aSzcXeFx8fTMft[/tex]并问它们不同特征值的特征向量是否两两正交? 它们是否可以相似对角化?
判断矩阵[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWoGNXAqhwZEepcy9qfmUbiWDJnvaw1HUbQJlFz+L49mtT9iDWk27vO2YRwDxh+BISkluY5BVmrMtR5s/G5H9KZrslL5g7D0e2NZAJythvdiY[/tex]是否与对角矩阵相似;若与对角矩阵相似,求一个可逆矩阵 [tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使[tex=3.357x1.286]QehgMsIi+Hsdet9OihqiWQ==[/tex]为对角矩阵。
判断矩阵[tex=7.643x3.643]jyVOORWehIbTNQvvtYroWoGNXAqhwZEepcy9qfmUbiWDJnvaw1HUbQJlFz+L49mtT9iDWk27vO2YRwDxh+BISkluY5BVmrMtR5s/G5H9KZrslL5g7D0e2NZAJythvdiY[/tex]是否与对角矩阵相似;若与对角矩阵相似,求一个可逆矩阵 [tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使[tex=3.357x1.286]QehgMsIi+Hsdet9OihqiWQ==[/tex]为对角矩阵。