已知定义域为R的函数f(x)满足:对任意实数a,b有f(a+b)=f(a)·f(b),且f(x)>0,若f(1)=,则f(-2)等于[ ]
举一反三
- 定义域为R的函数f(x)对任意x都有f(2+x)=f(2-x),且其导函数f′(x)满足f′(x)2-x>0,则当2<a<4,有( )
- 定义在R上的函数y=f(x),f(0)≠0当x>0,f(x)>1且对于任意的a,b∈R有,f(a+b)=f(a)f(b),(1)证明:f(0)=1.(2)证明:对于任意的x∈R,恒有f(x)>0.
- 若实值函数F定义域为全体实数,且满足任意x,y:f(z+3)=f(x)f(y)。此时,若f(8)=4,则有f(2)=() A: 0 B: #$IMG0$# C: #$IMG1$# D: 2
- 如果一个函数f(x)满足(1)定义域为R;(2)任意x1,x2∈R,若x1+x2=0,则f(x1)+f(x2)=0;(3)任意x∈R,若t>0,f(x+t)>f(x).则f(x)可以是( ) A: y=-x B: y=3x C: y=x3 D: y=log3x
- 若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)f(b),且当x<0时,f(x)>1