设计一个函数利用周游图的方法输出一个无向图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中从顶点[tex=0.786x1.0]8w3MvouHWcBTSZ1PQdyQ+Q==[/tex]到[tex=0.786x1.071]nMxUPKIHz37baTvRKn5TQg==[/tex]的长度为[tex=0.5x0.786]BgHR5DBWke5rTEC5XEckiQ==[/tex]的简单路径,假设无向图采用邻接表存储结构。
举一反三
- 假设图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]采用邻接表存储,设计一个算法,输出图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中从顶点[tex=0.643x0.786]cnVwa8IjZzNSEmAUXJ8VCQ==[/tex]到[tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex]的所有简单路径。
- 设 9 阶无向图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中,每个顶点的度数不是 5 就是 6, 证明 : [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中至少有 5 个 6 度顶点或至 少有 6 个5 度顶点.
- 假设图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]采用邻接表存储,设计一个算法求无向图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的连通分量个数。
- 证明:若 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是简单图,并且最多有一个 3 度顶点,则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 包含 [tex=1.357x1.214]EIN5AiZ59vmZ5JCP0wScx//qLmLytHexB/ZIuIU+wNY=[/tex] 的一 个剖分图。
- 假设图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]采用邻接表存储,编写一个实现连通图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的深度优先遍历(从顶点[tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex]出发)的非递归算法.