证明:若 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是简单图,并且最多有一个 3 度顶点,则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 包含 [tex=1.357x1.214]EIN5AiZ59vmZ5JCP0wScx//qLmLytHexB/ZIuIU+wNY=[/tex] 的一 个剖分图。
举一反三
- 证明: 若 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是简单图但不是偶图,并且 [tex=8.071x1.571]kFeU3E65Ds5fPilC+LdedGhnQrgZhFDxWg03m26OLEpR9gVN+Snzd4J583b0rAzD[/tex], 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 包含三角形.
- 设 9 阶无向图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中,每个顶点的度数不是 5 就是 6, 证明 : [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中至少有 5 个 6 度顶点或至 少有 6 个5 度顶点.
- 无向图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的边数[tex=3.643x1.214]mO36Wm4FZIPAIlSBY34nPg==[/tex]个 4 度顶点,4 个 3 度顶点,其余顶点的度数均小于3.问 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]至 少有几个顶点.
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是简单图, 证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是完全图当且仅当 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 有 [tex=2.857x2.214]jcCMHflCR8OS9TosV6N5vMuPmF8DXSHKmIKBnV2ExTOzIbKHOfak9FzzxRS+B78HS9CqeTlpcCcUdpM7q4bAOg==[/tex] 条边.
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是[tex=2.571x1.357]RCgEguS/QG5fVJCZ363pyw==[/tex]简单图且[tex=1.929x1.143]KNVp+Trjkb309vQNIsRFrKDGoy6IwvHv+k8T2+NnCVU=[/tex],若[tex=3.429x1.571]FJ6yXGsPQ5pibRBoqDaOxUzIXTM0AOHaYNjA1Kp67ag=[/tex],则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是连通图。