设$S$为$x=y=z=0$, $x=y=z=a$平面所围的正方体并取外侧为正向, 则第二型曲面积分$$\int\!\!\!\!\int_S y(x-z)dydz+x^2dzdx+(y^2+xz)dxdy=$$
A: $0$
B: $\frac{a^4}{2}$
C: $a^4$
D: $\frac{3a^4}{2}$
A: $0$
B: $\frac{a^4}{2}$
C: $a^4$
D: $\frac{3a^4}{2}$
举一反三
- 设$S$为平面$x=y=z=0$, $x=y=z=1$所围的四面体表面并取外侧为正向, 则第二型曲面积分$$\int\!\!\!\!\int_S xydydz+yzdzdx+zxdxdy=$$ A: $\frac{1}{8}$ B: $\frac{1}{4}$ C: $1$ D: $\frac{3}{2}$
- 9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 已有定义语句:int x=2,y=4,z=6;if(x>y) z=x;x=y;y=z;执行上述语句后x,y,z的值是____。 A: x=4,y=2,z=2 B: x=4,y=4,z=2 C: x=4,y=6,z=6 D: x=4,y=2,z=6
- 设x,y,z为int型变量,且x=3,y=-4,z=5,则表达式 !(x>y)+(y!=z)||(x+y)&&(y-z)的值为( ) A: -1 B: 0 C: 1 D: 2