• 2022-05-29
    计算下列对坐标的曲面积分:[tex=6.5x3.357]VfNPe2HWaI4MUpES7+XJY2u5FX4nfhwKkrq1QMbcbAG+xzWAR0Cfimnai7QNlyu8[/tex][tex=12.5x1.286]p1e3z4WXRJgZFGmZGfkZrJ+LHlSk1WpTvS5M4e4R4rM=[/tex][tex=8.286x1.286]EDFWdFcLhwSC1ugpx9MsFbQhnYMjJAsXmW/tGuwy1/E=[/tex],其中[tex=3.714x1.286]JCUVUcOaf8d7OiYJ9g0q+Q==[/tex]为连续函数,[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]是平面[tex=5.714x1.286]mgjpMdBcj+k9zMo7JVExxA==[/tex]在第四卦限部分的上侧。
  • 在[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]上,[tex=5.714x1.286]Uu2J7sz7V0QsQP4edEH25A==[/tex]。由于[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]取上侧,故[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]在任一点处的单位法向量为[tex=12.286x3.429]6cVkFDtgwlGOm6HKtpt4v83uucjpQ1jndxlQc5TQ+W9dnvosb3gkQuUjrJOLgtporpgKpE2LQY68QylU+GSSiwg8p5p/Npck1AMdYQOoGL0=[/tex][tex=6.714x2.643]yitrMk3jNijtKCwQ2qs4FAwqgymIoMRk0ge8lPNgYVvc3HuapMO+GM8qMPqi7VtP[/tex]由两类曲面积分之间的联系,可得原式[tex=8.786x3.357]VPnbCxjJfLJ5TnrHB4NCEnSyVw0a1/MLo38AB9285vh2euwyYzBFev2gpH3tSdtF[/tex][tex=12.214x1.357]QICvpKhsakld+4vtwNWBeCCfm506PcmquKaBLlSnV/KEma5fKrLSoEKRu2QacDon[/tex]       [tex=8.286x3.357]yitrMk3jNijtKCwQ2qs4FBbFIUZi0NF5QHENF0x5PlqwpvyXE+nphvspQP0QaZNzYc50/AO8GoWw2hgq10usjA==[/tex][tex=7.786x1.357]wu96xJr4RLXR2sZnrJkMZS+EX5U9q3wep2yVoVZu7zo=[/tex]       [tex=10.357x3.357]yitrMk3jNijtKCwQ2qs4FBbFIUZi0NF5QHENF0x5PlpHxJLCnrFc1aFF5pjy67/JC6wRRzjc7YOPDZ5tTksSug==[/tex][tex=4.929x3.357]5CkfjSfU0XWuGuLf2vXw0JCvTHJMdLIXt3oBlas+difQ1lRZKeu430C7EqRGOdAObLltzPCwpms53WZFqWOAPw==[/tex]       [tex=3.071x2.643]yitrMk3jNijtKCwQ2qs4FEuc4o0BDZ/fdk8Vszz2B0I=[/tex][tex=4.357x1.286]yamFFAOZy3hWGAL1ySYcy9fIAfOzOI0tdgdHZinHv1E=[/tex][tex=6.786x2.929]yitrMk3jNijtKCwQ2qs4FJ9tI3WmNt+uQUlDy3Mq27QLDd8mtlmbWEjldOnnZ0Z8oL7OUmyR/QJHIDseTb53zw==[/tex]

    举一反三

    内容

    • 0

      计算曲面积分[tex=7.143x2.643]Zabh7S34lJSKhDmNbsK1ePa0HV7bPG1QtSNexUtKHc02C1Ec5lwDDZn4uuFItzf/[/tex],其中[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]为抛物面[tex=6.286x1.571]z1bl0cdTFPZ2/pnrvVzMKpWp+Uk7VxUYp9bcRCY+Jykn0xsjeZ4OfuAXF74QTxvd[/tex]在xOy面上方的部分,f(x,y,z)为:[tex=5.0x1.357]ADs+A7B4/vtPTph/Dy4Csle6yqKzpPzoVf7eKgDlkX0=[/tex]

    • 1

      求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$

    • 2

      [tex=2.214x1.0]Z8GWW72u+MH/mjafnp+83A==[/tex]丙酮酸经过丙酮酸脱氢酶系和柠檬酸循环产生[tex=4.0x1.214]EPDWVFNjIR8daNoozaWRDg==[/tex],生成的[tex=3.214x1.0]1AqDCKqjaAug6buHS5Z0tQ==[/tex]、[tex=3.429x1.214]HYAn2+I9AZQLWcA3ajoPaw==[/tex]和[tex=2.143x1.0]qQANfGnLx7pE5mcaEibuNg==[/tex](或[tex=2.071x1.0]YGdeb/NAM7yg+XY6SY16Fg==[/tex])的摩尔比是(  )。 未知类型:{'options': ['3:2:0', '4:2:1', '4:1:1', '3:1:1', '2: 2:2'], 'type': 102}

    • 3

      已知[tex=10.286x1.357]CdP0UkObstV1b7lIUB/OAwRlFNM82Gi4HR3Pkv+snpM=[/tex],则[tex=0.857x2.357]FWVk93yCZwpUNtFNtVwqIg==[/tex]值为 A: 1 B: 4 C: 1或4 D: 4或-1 E: -1

    • 4

      下列函数是哪些函数复合而成的?(1)[tex=4.214x1.286]6PuLCl/TwscTl61WSePGog==[/tex];(2)[tex=5.214x1.286]+mZ2Cm2OprRKGTGg0iqmyZx+4lZ796PxrSQNx30R9UU=[/tex];(3)[tex=4.214x1.357]jTbrMH55vzOFOJlLSnfh103OHFmRhIjXZGzPnfweOX0=[/tex];(4)[tex=6.071x1.286]W2A0mViHY0pK74wEByr6ED5K+AKV/pxHaeQdYGQBxwc=[/tex];(5)[tex=6.714x1.429]8up/G1s+GteD9ejcGkFVmYl3TTtTik5kuwrPDCv0JkbGIWyY33cnaw7XtBiPcSnh[/tex];(6)[tex=5.714x1.286]APaFs2rWyubdkzLcUVVxVJSSAsLEOtXn4KjnToE2BQA=[/tex];