• 2022-05-29
    计算下列对坐标的曲面积分:[tex=9.714x2.643]Zabh7S34lJSKhDmNbsK1eJKDXOo37nf6BkS83i2cB8iPNPygOWD46cTspF1Y6dtj[/tex][tex=9.286x1.286]7P852iYqiS2X7uRBinRDozQ2DlT6qWWuwGdU8as3n30=[/tex][tex=8.857x1.286]5yPytvk3nJrQnQH2+A/1vzzGXkBDWqxDjGrSWgQ4GsU=[/tex],其中[tex=3.714x1.286]PsAK467U1/a1oG7egZ+PGQ==[/tex]为连续函数,[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]是平面[tex=5.714x1.286]mgjpMdBcj+k9zMo7JVExxA==[/tex]在第四卦限部分的上侧。
  • 解  曲面[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]可表示为[tex=5.714x1.286]Uu2J7sz7V0QsQP4edEH25A==[/tex],[tex=20.786x1.286]4JQP1I5PPqS28gR0XQ2p9EUz6SkH6wDA8F8jGtPx5BMHv4fWjFksRMJHUiY1LCngGTNHh12GsAqb5C2V2beuHmrI25KYfdgXfKnLgl0PEmI=[/tex],[tex=0.714x1.286]rJIPk/ti1ZBQvvN6zyi1Vw==[/tex]上侧的法向量为[tex=5.714x1.286]ri2LJHOFlAwUjvdp+DXcWw==[/tex],单位法向量为[p=align:center][tex=17.643x2.786]zOk5UWylb0KTmdotd5MPqD5/3Z+clqhWGGHGvWR/pQq+S547w5WLkEtGjFdYX+JD8JXVKvcKb2kea5gIEmnyZoY4Rr8l/OYFQhIsSpRHEqbYOmTMwxZN0dWOPLcgvdhEIf6A8BOv9oJS91D4TNnTjnxT8yaRfcBfQMwMak25r2g=[/tex],由两类曲面积分之间的联系可得[tex=9.714x2.643]Zabh7S34lJSKhDmNbsK1eJKDXOo37nf6BkS83i2cB8iPNPygOWD46cTspF1Y6dtj[/tex][tex=8.929x1.357]BPbbvE5mqEjSmsHl0Pdx3qdcDRi1tPib/kVtW5WngOs=[/tex][tex=8.429x1.357]9Z6EnRBvEOjQw5qw7p/r7TnR0ypshvxaRhTa6+HuMsw=[/tex][tex=21.214x2.643]pC222yemkww+/V/S1dIOm9I4G5bsCzUHL/dM1x8avRXqoo4ePy4wD2Fb2S51PNV/DnchjHVGlOVXr6EESCT7jJR13tHj2k28NyQWWUdsx47v3IB92c56BY2cKDB0wNnV[/tex][tex=24.286x2.786]pC222yemkww+/V/S1dIOm4SdoF8KlkHaYaeUSJdqmEz2xBsOkVgowazZycMfJnFb4aATMwQMEauZhv2G2bpTxU+EuzJh/3xq+4I2hLUSDKlQ4JUSlfIp8a4TIfrn/G2AHU+oLul3E6gPKtgnI+vWt2yyw30J1PsWVwgIHeAcuZ/5iRj1tKdPMobgfcxPTD4u[/tex][tex=9.857x2.714]yitrMk3jNijtKCwQ2qs4FH1VA1Nu3Y5pHrMAwchi8Yyn+y9V4lWGKClVYgpBPV8HwBOUghk8cxYky7i2ZU5aXA==[/tex][tex=6.214x2.714]yitrMk3jNijtKCwQ2qs4FH1VA1Nu3Y5pHrMAwchi8YwZD29fTAxpg5QRmFL8A53F[/tex][tex=8.071x2.857]OjkCvLb5rYM/U4c97Q0qIowwQlWAsEC/NlpUxbo9KlrmIXSpHHedLebhx33BaaQx[/tex]

    举一反三

    内容

    • 0

      求下列函数的导函数:(1) [tex=5.0x2.357]X/CieCDGJ7iPQ3YFWuscHxHrcIE/dPFa9tFyiJXze8A=[/tex](2)[tex=6.643x1.714]Oj74y/L+OxY81QME5JWMcl+7PZ2FGQswwvjgVhjq1Dmb6dBU0oAjZBW7eFBVjqo6[/tex]

    • 1

      对于以下两种情形:(1)x为自变量,(2)x为中间变量,求函数[tex=2.214x1.214]sy9gaFRMGlrH59gm9bWSDg==[/tex]的[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex]

    • 2

      求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$

    • 3

      有容量分别为[tex=3.286x1.286]pCZ+fPe3X5XtlIcXCf6RGw==[/tex]和[tex=3.286x1.286]JjWMjbwalVPPThZBywJsLQ==[/tex]的独立随机样本得到下述观测结果, (X、 Y为观测值, f为频数)X   12.3    12.5    12.8   13.0   13.5   Y   12.2  12.3   13.0f      1          2        4         2       1      f      6      8        2现已知变量X、Y的总体均呈正态分布。请问在0.05的显著性水平下,可否认为这两个总体属同一分布?[tex=24.786x1.286]OVWwFMgiPzBDnRSqBYypUv4puOxaqZVbzeGoYhEt/ZwiQxP0kGgAAWuaJInyBhH09xLkSWqB6n3qd1WXaKpfvwUNfmmVSMJTzi4wz4IT6q4=[/tex][tex=8.429x1.286]AcUD6cTXhAghaQMem3GRbFMfFVpZHcyA3tP0z+S7RAk=[/tex] [tex=13.357x1.357]ZPe8nXNlBeMmW2cEA+D6DaqP/loFbcVH2QukDH1SMofLM6E74nDyl0WrH8imm/Ai[/tex]

    • 4

      下列函数是哪些函数复合而成的?(1)[tex=4.214x1.286]6PuLCl/TwscTl61WSePGog==[/tex];(2)[tex=5.214x1.286]+mZ2Cm2OprRKGTGg0iqmyZx+4lZ796PxrSQNx30R9UU=[/tex];(3)[tex=4.214x1.357]jTbrMH55vzOFOJlLSnfh103OHFmRhIjXZGzPnfweOX0=[/tex];(4)[tex=6.071x1.286]W2A0mViHY0pK74wEByr6ED5K+AKV/pxHaeQdYGQBxwc=[/tex];(5)[tex=6.714x1.429]8up/G1s+GteD9ejcGkFVmYl3TTtTik5kuwrPDCv0JkbGIWyY33cnaw7XtBiPcSnh[/tex];(6)[tex=5.714x1.286]APaFs2rWyubdkzLcUVVxVJSSAsLEOtXn4KjnToE2BQA=[/tex];