• 2022-05-29
    求曲面积分[tex=29.0x2.643]bvTt2KE1WatSuQ4zFkQwoiWHN6dIHhFc9sZ5Hj4OR0pAZKdhxH+BWQ4txiW9wJnq1xiGTqySeP2xQ7p3cmJKGPp/HbXxPCG1auozBTdjinfhTQfo6Y61eCBj3fiVEkKX[/tex]其中 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是由扮物面[tex=3.929x1.429]eXG42LBlVmCe9OBZMR2NwQ==[/tex] 介于平面 [tex=1.786x1.0]DiJR/9DW631uuahYoMJyLg==[/tex] 与 [tex=1.786x1.0]Pg1maLyEp4cIH+1hfXTXdA==[/tex] 之间的部分,法线方向向 下,[tex=3.714x1.357]jXlbxPLLnQnx5iOoWi65fg==[/tex] 为连续函数.
  • 分析与解答:可以直接把它化成二重积分 [ 教科书,[tex=2.286x1.214]yDuhWtfHcc46lDa2HtTKkQ==[/tex],公式[tex=3.857x1.357]ZcGG2Co3L9dw/mIF60gyaA==[/tex], 即[tex=29.0x2.643]bvTt2KE1WatSuQ4zFkQwoiWHN6dIHhFc9sZ5Hj4OR0pAZKdhxH+BWQ4txiW9wJnq1xiGTqySeP2xQ7p3cmJKGPp/HbXxPCG1auozBTdjinfhTQfo6Y61eCBj3fiVEkKX[/tex][注意,下面的 [tex=11.786x1.643]iiht5tkcsVhNx/+14BRIXAH1ZuvyS6Zyqa8rkj1yDL4fY9ZddFZuso+7HJcGmap9Xb17WSVJ3ndn7CQUvh8Z0sv3Md20VQiV/lVvrqXuRUY=[/tex]为圆环 [tex=7.143x1.571]RCT+pbAiXsXwNvAa9XvKJHaGdxwZ3w92U9Db2TXXM5fUWJY2UJTnXJjbPY2+/9SM81qIjCP7TYH2PDQLvQ+5EA==[/tex][tex=22.786x2.857]WaEo3d0Hthgu+xZBAmXQfLfPRIjGp3V1AM5OaEuU65WrMFdcjHygfMfnANNK8lbZLa9JwcHtDlX/pKNQTRKvAAZDYETak5yNLoN3RxNTdhmyQYzYkkteWRJD4THd93LSHb3T+5y/En1pgYnPfp9Emo3EuJe25XSdQVoctaGLLmwo1HC/8L1DxUYPFCuaO00h[/tex][tex=14.429x1.571]k941hR7C3GMcF0mVL0d5ZwCPXI0vFDB6e3qQ7nez6PI7ZiNjnuS/V0xrhHdwqy+W/0nXeRL3ZOkQclENoxFvP1TIsYChDfw307DygQA3GbitT3xaV+MuZW1t/6zsClTz[/tex][tex=25.786x2.786]UPDlXuMZefgfmN1rKH5qy2WAMnA5/cRNqKnXwP611PVGv0PjVc/uY+2GQGYkpyuNjdmOHAHAuCSdMC6Bz3tKz1VI6E10n45LdBbEXiBe005kE9gb6wIBNN/DavYTBQRw5jiQGjc47+T//EYoY2F0+A==[/tex][tex=14.143x1.571]t7GfzlabUy1WAJeP4csVixN0MY4mjjgP/wnqIRmthQGcIEUaqff03uLXXjhCMP+c4JEQWmIUWgKxfurR/DMbf/IHIg0Mv5aB/Ti5YI1NUR4=[/tex][tex=27.643x3.0]2A9bJWq5vFzjWLyVGECuIVmkV13e3L+ccQPPcDXhbNhMVKKzR7fNnmH9zsNGiw3cbIEv0J0CJE5iuR/P0xZ7kAA35Car6A5ir/xOmfG2maDZ9WM8vtS4NJCANl49tsHeEdtdCW0MhPW15RUcWj5B31Di8zHQOxNlhkQCny0/Tg2/CBPr9UXtBEa1jT5jrwoMlUoYIw//qQl+LDsp8ZQJzt752x3KaJ3tZaOtyAyIoanX4uhG8X/xxHmH51qccpIx[/tex]

    内容

    • 0

      [tex=2.214x1.0]Z8GWW72u+MH/mjafnp+83A==[/tex]丙酮酸经过丙酮酸脱氢酶系和柠檬酸循环产生[tex=4.0x1.214]EPDWVFNjIR8daNoozaWRDg==[/tex],生成的[tex=3.214x1.0]1AqDCKqjaAug6buHS5Z0tQ==[/tex]、[tex=3.429x1.214]HYAn2+I9AZQLWcA3ajoPaw==[/tex]和[tex=2.143x1.0]qQANfGnLx7pE5mcaEibuNg==[/tex](或[tex=2.071x1.0]YGdeb/NAM7yg+XY6SY16Fg==[/tex])的摩尔比是(  )。 未知类型:{'options': ['3:2:0', '4:2:1', '4:1:1', '3:1:1', '2: 2:2'], 'type': 102}

    • 1

      产品[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是互补品。需求函数;[br][/br]$Q_{X}=640-4 P_{X}-P_{Y}, \quad Q_{Y}=\frac{1}{2} Q_{X}-\frac{1}{2} P_{Y}$\ \假定两者短期供给是固定的:[br][/br][tex=7.571x1.214]CfZnuLHqwTFF3JM+8Dj0b8jBQ/cIxAsLu6pTzTLTHBE=[/tex]求:这两种产品的均衡价格为多少?

    • 2

      下列函数是哪些函数复合而成的?(1)[tex=4.214x1.286]6PuLCl/TwscTl61WSePGog==[/tex];(2)[tex=5.214x1.286]+mZ2Cm2OprRKGTGg0iqmyZx+4lZ796PxrSQNx30R9UU=[/tex];(3)[tex=4.214x1.357]jTbrMH55vzOFOJlLSnfh103OHFmRhIjXZGzPnfweOX0=[/tex];(4)[tex=6.071x1.286]W2A0mViHY0pK74wEByr6ED5K+AKV/pxHaeQdYGQBxwc=[/tex];(5)[tex=6.714x1.429]8up/G1s+GteD9ejcGkFVmYl3TTtTik5kuwrPDCv0JkbGIWyY33cnaw7XtBiPcSnh[/tex];(6)[tex=5.714x1.286]APaFs2rWyubdkzLcUVVxVJSSAsLEOtXn4KjnToE2BQA=[/tex];

    • 3

      在化合物[tex=3.143x1.214]v4ZSy342c4rYHJ17K2Seyg==[/tex]的质谱中, [tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]和[tex=2.286x1.143]6xy5cvv57RhdtLjINMq7Bw==[/tex]峰的相对强度比应为( ) A: 98. 9 : 1. 1 B: 98. 9 : 0. 02 C: 2 : 1 D: 1 : 1 E: 3 : 1

    • 4

      若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?