设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______
设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
表达式:'1223'+'2345' 的值为____。() A: '12232345' B: '1223'+'2345' C: '3568' D: 3568
表达式:'1223'+'2345' 的值为____。() A: '12232345' B: '1223'+'2345' C: '3568' D: 3568
视图(1)的名称是:[img=1235x853]1803bf3568ffdc1.png[/img] A: 正视图 B: 上视图 C: 仰视图 D: none
视图(1)的名称是:[img=1235x853]1803bf3568ffdc1.png[/img] A: 正视图 B: 上视图 C: 仰视图 D: none
background:url(2、png),url(1、jpg),url(3、png),url(4、jpg);},表示哪张图片处在最上层() A: 2、png B: 1、jpg C: 3、png D: 4、jpg
background:url(2、png),url(1、jpg),url(3、png),url(4、jpg);},表示哪张图片处在最上层() A: 2、png B: 1、jpg C: 3、png D: 4、jpg
In 1803 the United States purchased Louisiana from _____.
In 1803 the United States purchased Louisiana from _____.
设${\bf{r}}$是从地心指向卫星质心的矢量,则表达式____总成立。 A: ${\bf{r}} \cdot {\bf{\dot r}} = r \cdot \dot r$ B: $\left| {{\bf{r}} \times {\bf{\dot r}}} \right| = r \cdot \dot r$ C: ${\bf{r}} \cdot {\bf{\ddot r}} = r \cdot \ddot r$ D: $\left| {{\bf{r}} \times {\bf{\ddot r}}} \right| = r \cdot \ddot r$
设${\bf{r}}$是从地心指向卫星质心的矢量,则表达式____总成立。 A: ${\bf{r}} \cdot {\bf{\dot r}} = r \cdot \dot r$ B: $\left| {{\bf{r}} \times {\bf{\dot r}}} \right| = r \cdot \dot r$ C: ${\bf{r}} \cdot {\bf{\ddot r}} = r \cdot \ddot r$ D: $\left| {{\bf{r}} \times {\bf{\ddot r}}} \right| = r \cdot \ddot r$