以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
能正确表示“当x的取值在[-58,-40]和[40,58]范围内为真,否则为假”的表达式是: (x>= -58) && (x<= -40) && (x>=40) && (x<=58)|(x>= -58) && (x<= -40) || (x>=40) && (x<=58)|(x>= -58) | |(x<= -40) && (x>=40) || (x<=58)|(x>= -58) || (x<= -40) || (x>=40) || (x<=58)
能正确表示“当x的取值在[-58,-40]和[40,58]范围内为真,否则为假”的表达式是: (x>= -58) && (x<= -40) && (x>=40) && (x<=58)|(x>= -58) && (x<= -40) || (x>=40) && (x<=58)|(x>= -58) | |(x<= -40) && (x>=40) || (x<=58)|(x>= -58) || (x<= -40) || (x>=40) || (x<=58)
能正确表示“当x的取值在[-58,-40]和[40,58]范围内为真,否则为假”的表达式是()。 A: (x>=-58)&&(x<=-40)&&(x>=40)&&(x<=58) B: (x>=-58)∥(x<=-40)∥(x>=40)∥(x<=58) C: (x>=-58)&&(x<=-40)∥(x>=40)&&(x<=58)
能正确表示“当x的取值在[-58,-40]和[40,58]范围内为真,否则为假”的表达式是()。 A: (x>=-58)&&(x<=-40)&&(x>=40)&&(x<=58) B: (x>=-58)∥(x<=-40)∥(x>=40)∥(x<=58) C: (x>=-58)&&(x<=-40)∥(x>=40)&&(x<=58)
若|x-3|=3-x,则x的取值范围是______ A: x>0 B: x=3 C: x<3 D: x≤3 E: x≥3
若|x-3|=3-x,则x的取值范围是______ A: x>0 B: x=3 C: x<3 D: x≤3 E: x≥3
假定16<X≤40,那么用边界值分析法,X在测试中应该取的边界值是: A: X=16,X=17,X=40,X=41 B: X=15,X=16,X=40,X=41 C: X=16,X=17,X=39,X=40 D: X=15,X=16,X=39,X=40
假定16<X≤40,那么用边界值分析法,X在测试中应该取的边界值是: A: X=16,X=17,X=40,X=41 B: X=15,X=16,X=40,X=41 C: X=16,X=17,X=39,X=40 D: X=15,X=16,X=39,X=40
直接积分法1.∫(3^x)(e^x)dx2.∫e^(3+t)/2dx3.∫[3^x-e^(-x)]e^xdx
直接积分法1.∫(3^x)(e^x)dx2.∫e^(3+t)/2dx3.∫[3^x-e^(-x)]e^xdx
求定积分,上限3/4,下限-3/4,(1+x)^3除以根号下(1-|x|)dx答案为133/40
求定积分,上限3/4,下限-3/4,(1+x)^3除以根号下(1-|x|)dx答案为133/40
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)
已知E(X)=-1,D(X)=3,求:E[3(X*X-2)]
已知E(X)=-1,D(X)=3,求:E[3(X*X-2)]
设X~U(1,b), E(X)=3,则P(1<;X<;3)=.
设X~U(1,b), E(X)=3,则P(1<;X<;3)=.