已知函数f(x)是奇函数,且f(2)=1,则[f(-2)]³=( ) A: 1 B: 8 C: -1 D: -8
已知函数f(x)是奇函数,且f(2)=1,则[f(-2)]³=( ) A: 1 B: 8 C: -1 D: -8
一维非稳态导热采用向前差分离散微分方程,其显式格式的中心节点方程的稳定性条件为( )。 A: F<SUB>o</SUB><1/2 B: F<SUB>o</SUB>≤1/2 C: F<SUB>o</SUB>≥1/2 D: F<SUB>o</SUB>>1/2
一维非稳态导热采用向前差分离散微分方程,其显式格式的中心节点方程的稳定性条件为( )。 A: F<SUB>o</SUB><1/2 B: F<SUB>o</SUB>≤1/2 C: F<SUB>o</SUB>≥1/2 D: F<SUB>o</SUB>>1/2
已知$f(x),\ g(x)$互为反函数,且$f(1)=2,\ {g}'(2)=2,\ {g}''(2)=1$,则${f}''(1)=$( )。 A: $1$ B: $\frac{1}{2}$ C: $-\frac{1}{4}$ D: $-\frac{1}{8}$
已知$f(x),\ g(x)$互为反函数,且$f(1)=2,\ {g}'(2)=2,\ {g}''(2)=1$,则${f}''(1)=$( )。 A: $1$ B: $\frac{1}{2}$ C: $-\frac{1}{4}$ D: $-\frac{1}{8}$
【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
int f( unsigned int n) { if ( n==0 || n==1 ) return 1; else return n*f(n-1);} A: O(1) B: O(n) C: O(n^2) D: O(n!)
int f( unsigned int n) { if ( n==0 || n==1 ) return 1; else return n*f(n-1);} A: O(1) B: O(n) C: O(n^2) D: O(n!)
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
求xf(x2)?f′(x2)dx等于() A: (1/2)f(x2) B: (1/4)f(x2) C: (1/8)f(x2) D: 1/4[f(x2)]2
求xf(x2)?f′(x2)dx等于() A: (1/2)f(x2) B: (1/4)f(x2) C: (1/8)f(x2) D: 1/4[f(x2)]2
8、求积公式ò2 f (x)dx » 1 f (0) + 4 f (1) + 1 f (2) 的代数0 3 3 3精确度为( )。 A: 1 B: 2 C: 3 D: 4
8、求积公式ò2 f (x)dx » 1 f (0) + 4 f (1) + 1 f (2) 的代数0 3 3 3精确度为( )。 A: 1 B: 2 C: 3 D: 4
对线性空间$R^{2}$中以下函数$f$,不是线性函数的有 ( ). A: $f(x_{1},x_{2})=4x_{1}+x_{2}log_{3}8$ B: $f(x_{1},x_{2})=x_{1}+4x_{2}+4$ C: $f(x_{1},x_{2})=x_{1}^{2}+x_{1}x_{2}+x_{2}^{2}$ D: $f(x_{1},x_{2})=sin (x_{1})+cos( x_{2})$
对线性空间$R^{2}$中以下函数$f$,不是线性函数的有 ( ). A: $f(x_{1},x_{2})=4x_{1}+x_{2}log_{3}8$ B: $f(x_{1},x_{2})=x_{1}+4x_{2}+4$ C: $f(x_{1},x_{2})=x_{1}^{2}+x_{1}x_{2}+x_{2}^{2}$ D: $f(x_{1},x_{2})=sin (x_{1})+cos( x_{2})$
已知函数f(x)满足:f(a+b)=f(a)•f(b),f(1)=2,则f2(1)+f(2)f(1)+f2(2)+f(4)f(3)+f2(3)+f(6)f(5)+f2(4)+f(8)f(7)=______.
已知函数f(x)满足:f(a+b)=f(a)•f(b),f(1)=2,则f2(1)+f(2)f(1)+f2(2)+f(4)f(3)+f2(3)+f(6)f(5)+f2(4)+f(8)f(7)=______.