• 2022-06-04 问题

    设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)

    设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)

  • 2022-06-19 问题

    求微分方程[img=261x61]17da6536c0cca5d.png[/img]的通解; ( ) A: C18*cos(t) - C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) B: C18*cos(t) + C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) C: C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t) D: -C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t)

    求微分方程[img=261x61]17da6536c0cca5d.png[/img]的通解; ( ) A: C18*cos(t) - C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) B: C18*cos(t) + C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) C: C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t) D: -C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t)

  • 2021-04-14 问题

    已知u(t)=2 cos (2t-90°)V,i(t)= cos (2t+150°)mA,则( )。

    已知u(t)=2 cos (2t-90°)V,i(t)= cos (2t+150°)mA,则( )。

  • 2022-05-26 问题

    设函数$$y=y(x)$$由$$\left\{ \begin{matrix} x=a(t-\sin t), \\ y=a(1-\cos t) \\ \end{matrix} \right.$$确定,则$${y}''(x)=$$(). A: $$-\frac{1}{a(1-\cos t)}$$ B: $$-\frac{1}{a{{(1-\cos t)}^{2}}}$$ C: $$\frac{1}{a(1-\cos t)}$$ D: $$\frac{1}{a{{(1-\cos t)}^{2}}}$$

    设函数$$y=y(x)$$由$$\left\{ \begin{matrix} x=a(t-\sin t), \\ y=a(1-\cos t) \\ \end{matrix} \right.$$确定,则$${y}''(x)=$$(). A: $$-\frac{1}{a(1-\cos t)}$$ B: $$-\frac{1}{a{{(1-\cos t)}^{2}}}$$ C: $$\frac{1}{a(1-\cos t)}$$ D: $$\frac{1}{a{{(1-\cos t)}^{2}}}$$

  • 2022-05-30 问题

    x=tan(t)sin(t)-cos(t)=?

    x=tan(t)sin(t)-cos(t)=?

  • 2021-04-14 问题

    cos(t),sin(t)线性无关

    cos(t),sin(t)线性无关

  • 2021-04-14 问题

    1,cos(t),sin(t)线性无关

    1,cos(t),sin(t)线性无关

  • 2021-04-14 问题

    cos6t的拉氏变换为____

    cos6t的拉氏变换为____

  • 2022-06-19 问题

    求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)

    求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)

  • 2022-06-16 问题

    今有信号x(t)=cos⁡(2πt)+2 cos⁡(4πt)+3 cos⁡(6πt) 试确定 fc(信号截止频率),fN(赖奎斯特频率),fs(采样频率)。 A: fc=3HZ,fN=3HZ,fs≥6HZ B: fc=2HZ,fN=4HZ,fs≥8HZ C: fc=1HZ,fN=2HZ,fs≥4HZ D: fc=3HZ,fN=6HZ,fs≥6HZ

    今有信号x(t)=cos⁡(2πt)+2 cos⁡(4πt)+3 cos⁡(6πt) 试确定 fc(信号截止频率),fN(赖奎斯特频率),fs(采样频率)。 A: fc=3HZ,fN=3HZ,fs≥6HZ B: fc=2HZ,fN=4HZ,fs≥8HZ C: fc=1HZ,fN=2HZ,fs≥4HZ D: fc=3HZ,fN=6HZ,fs≥6HZ

  • 1 2 3 4 5 6 7 8 9 10