设[tex=2.286x1.286]olMvwXCkRCzt+mUMthGCPw==[/tex]为域的扩张, [tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]中的元[tex=1.571x1.0]yFMW7iKbDUvC9rxmlgBbDQ==[/tex]分别是[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]次和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次代数元. [tex=7.5x1.357]Bvxf7yiogurcWNb8fdvGAw==[/tex]. 求证: [tex=6.5x1.357]afNBlx23XAkV7mRNR5sP7lmwSkgauEncjtHIKHTSQ9k=[/tex].
设[tex=2.286x1.286]olMvwXCkRCzt+mUMthGCPw==[/tex]为域的扩张, [tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]中的元[tex=1.571x1.0]yFMW7iKbDUvC9rxmlgBbDQ==[/tex]分别是[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]次和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次代数元. [tex=7.5x1.357]Bvxf7yiogurcWNb8fdvGAw==[/tex]. 求证: [tex=6.5x1.357]afNBlx23XAkV7mRNR5sP7lmwSkgauEncjtHIKHTSQ9k=[/tex].
设[tex=2.286x1.286]olMvwXCkRCzt+mUMthGCPw==[/tex]为域的扩张, [tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]中的元[tex=1.571x1.0]yFMW7iKbDUvC9rxmlgBbDQ==[/tex]分别是[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]次和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次代数元. [tex=7.5x1.357]Bvxf7yiogurcWNb8fdvGAw==[/tex]. 求证: 如果[tex=4.0x1.357]VjI9PC1wP1AoEjGtePY1Kg==[/tex], 则[tex=5.929x1.357]ZcYQmarJUT7gidBrWoI/vw==[/tex].
设[tex=2.286x1.286]olMvwXCkRCzt+mUMthGCPw==[/tex]为域的扩张, [tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]中的元[tex=1.571x1.0]yFMW7iKbDUvC9rxmlgBbDQ==[/tex]分别是[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]次和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次代数元. [tex=7.5x1.357]Bvxf7yiogurcWNb8fdvGAw==[/tex]. 求证: 如果[tex=4.0x1.357]VjI9PC1wP1AoEjGtePY1Kg==[/tex], 则[tex=5.929x1.357]ZcYQmarJUT7gidBrWoI/vw==[/tex].