• 2022-06-11 问题

    将正弦电压u = 10 sin( 314 t +30 ) V 施加于感抗XL = 5 的电感元件上,<br/>则通过该元件的电流 i = ( ) 。 A: 50 sin( 314 t +90 ) B: 2 sin( 314 t +60 ) C: 2 sin( 314 t -60 ) D: 2 sin( 314 t -30 )

    将正弦电压u = 10 sin( 314 t +30 ) V 施加于感抗XL = 5 的电感元件上,<br/>则通过该元件的电流 i = ( ) 。 A: 50 sin( 314 t +90 ) B: 2 sin( 314 t +60 ) C: 2 sin( 314 t -60 ) D: 2 sin( 314 t -30 )

  • 2022-06-01 问题

    对称三相负载三角形连接,若相电流iab=10[img=41x45]17e0b6a8592d8be.jpg[/img] sin(ωt十30o)A,则线电流iC为_______。 A: 10sinωt A B: 30 sin(ωt+60o) A C: 30 sin(ωt+120 o ) A D: 30sinωt A

    对称三相负载三角形连接,若相电流iab=10[img=41x45]17e0b6a8592d8be.jpg[/img] sin(ωt十30o)A,则线电流iC为_______。 A: 10sinωt A B: 30 sin(ωt+60o) A C: 30 sin(ωt+120 o ) A D: 30sinωt A

  • 2022-06-19 问题

    求微分方程[img=261x61]17da6536c0cca5d.png[/img]的通解; ( ) A: C18*cos(t) - C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) B: C18*cos(t) + C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) C: C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t) D: -C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t)

    求微分方程[img=261x61]17da6536c0cca5d.png[/img]的通解; ( ) A: C18*cos(t) - C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) B: C18*cos(t) + C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) C: C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t) D: -C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t)

  • 2022-06-09 问题

    设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)

    设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)

  • 2022-06-06 问题

    sin 54°cos 24°-sin36°sin 24°=sin 30°.

    sin 54°cos 24°-sin36°sin 24°=sin 30°.

  • 2022-06-07 问题

    下列信号中,( )信号的频谱是连续的。 A: $x(t) = A\sin (\omega t + {\varphi _1}) + B\sin (3\omega t + {\varphi _2})$ B: $x(t) = 5\sin 30t + 3\sin \sqrt {50} t$ C: $x(t) = {e^{ - at}}\sin {\omega _0}t$

    下列信号中,( )信号的频谱是连续的。 A: $x(t) = A\sin (\omega t + {\varphi _1}) + B\sin (3\omega t + {\varphi _2})$ B: $x(t) = 5\sin 30t + 3\sin \sqrt {50} t$ C: $x(t) = {e^{ - at}}\sin {\omega _0}t$

  • 2022-05-30 问题

    信号x(t) = sin(t)+sin(√2.t),是一个周期信号

    信号x(t) = sin(t)+sin(√2.t),是一个周期信号

  • 2022-06-07 问题

    已知某电路两端的电压u = 6 sin(314 t + 30°)V,流过的电流i = 2 sin(314 t - 30°)A,则该电路的性质是( )。 A: 电阻性 B: 电感性 C: 电容性 D: 电源性

    已知某电路两端的电压u = 6 sin(314 t + 30°)V,流过的电流i = 2 sin(314 t - 30°)A,则该电路的性质是( )。 A: 电阻性 B: 电感性 C: 电容性 D: 电源性

  • 2022-06-04 问题

    设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)

    设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)

  • 2022-06-06 问题

    sin(-30°)=sin30°

    sin(-30°)=sin30°

  • 1 2 3 4 5 6 7 8 9 10