计算∫∫xydydz+z^2dzdx+y^2dxdy其中∑为半球面z=√(4-x^2-y^2)的上侧
计算∫∫xydydz+z^2dzdx+y^2dxdy其中∑为半球面z=√(4-x^2-y^2)的上侧
计算\(\int\!\!\!\int\limits_\sum { { x^2}dydz + {y^2}dzdx + {z^2}} dxdy\),其中\(\sum\)为长方体\(\Omega \)的整个表面外侧,\(\Omega = \{ (x,y,z)|0 \le x \le a,0 \le y \le b,0 \le z \le c\} \)。 A: \((a + b + c)abc\) B: \((a -b + c)abc\) C: \((a + b -c)abc\) D: \((a - b - c)abc\)
计算\(\int\!\!\!\int\limits_\sum { { x^2}dydz + {y^2}dzdx + {z^2}} dxdy\),其中\(\sum\)为长方体\(\Omega \)的整个表面外侧,\(\Omega = \{ (x,y,z)|0 \le x \le a,0 \le y \le b,0 \le z \le c\} \)。 A: \((a + b + c)abc\) B: \((a -b + c)abc\) C: \((a + b -c)abc\) D: \((a - b - c)abc\)
下列语句语法正确的是( ) A: if x<2*y and x>y then y=x**2 B: if x<2*y : x>y then y=x^2 C: if x<2*y and x>y then y=x2 D: if x<2*y and x>y then y=x^2
下列语句语法正确的是( ) A: if x<2*y and x>y then y=x**2 B: if x<2*y : x>y then y=x^2 C: if x<2*y and x>y then y=x2 D: if x<2*y and x>y then y=x^2
已知点()(()-()1(),()y()1())(),()(2(),()y()2())(),()(()-()3(),()y()3())()都在函数()y()=()x()2()的图象上,则()()A.()y()1()<()y()2()<()y()3()B.()y()1()<()y()3()<()y()2()C.()y()3()<()y()2()<()y()1()D.()y()2()<()y()1()<()y()3
已知点()(()-()1(),()y()1())(),()(2(),()y()2())(),()(()-()3(),()y()3())()都在函数()y()=()x()2()的图象上,则()()A.()y()1()<()y()2()<()y()3()B.()y()1()<()y()3()<()y()2()C.()y()3()<()y()2()<()y()1()D.()y()2()<()y()1()<()y()3
【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )
【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )
4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
已知 Y 1 ~ N( m 1 , s 1 2 ) , Y 2 ~ N( m 2 , s 2 2 ) ,且 Y 1 和 Y 2 独立,则 Y 1 + Y 2 ~( )。
已知 Y 1 ~ N( m 1 , s 1 2 ) , Y 2 ~ N( m 2 , s 2 2 ) ,且 Y 1 和 Y 2 独立,则 Y 1 + Y 2 ~( )。
计算[img=58x47]18030730c01e2e9.png[/img]关于y的二阶偏导数应使用的语句是 A: Dt[x*Exp[y]/y^2,{y,2}] B: D[xExp[y]/y^2,y,2] C: [img=119x27]18030730c894003.png[/img]{{y,2}}] D: D[x*Exp[y]/y^2,{y,2}]
计算[img=58x47]18030730c01e2e9.png[/img]关于y的二阶偏导数应使用的语句是 A: Dt[x*Exp[y]/y^2,{y,2}] B: D[xExp[y]/y^2,y,2] C: [img=119x27]18030730c894003.png[/img]{{y,2}}] D: D[x*Exp[y]/y^2,{y,2}]
计算[img=58x47]1803072fbccdbd2.png[/img]关于y的二阶偏导数应使用的语句是 A: Dt[x*Exp[y]/y^2,{y,2}] B: D[xExp[y]/y^2,y,2] C: [img=119x27]1803072fc52a740.png[/img]{{y,2}}] D: D[x*Exp[y]/y^2,{y,2}]
计算[img=58x47]1803072fbccdbd2.png[/img]关于y的二阶偏导数应使用的语句是 A: Dt[x*Exp[y]/y^2,{y,2}] B: D[xExp[y]/y^2,y,2] C: [img=119x27]1803072fc52a740.png[/img]{{y,2}}] D: D[x*Exp[y]/y^2,{y,2}]
分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2
分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2