在MATLAB中,用命令x=1:9生产数组x。现在要把数组x的第2个和第7个元素都赋值为0,键入的指令是( ) A: x([2 7])=(0 0) B: x([2 7])=[0 0] C: x[(2 7)]=[0 0] D: x[(2 7)]=(0 0)
在MATLAB中,用命令x=1:9生产数组x。现在要把数组x的第2个和第7个元素都赋值为0,键入的指令是( ) A: x([2 7])=(0 0) B: x([2 7])=[0 0] C: x[(2 7)]=[0 0] D: x[(2 7)]=(0 0)
采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]
采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]
采用基2频率抽取FFT算法计算点序列的DFT,以下()流图是对的。 A: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] B: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] C: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7] D: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7]
采用基2频率抽取FFT算法计算点序列的DFT,以下()流图是对的。 A: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] B: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] C: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7] D: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7]
设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
F[x]中,若f(x)g(x)=2,则f(x^2)g(x^2)=()。 A: 0 B: 1 C: 2 D: 3
F[x]中,若f(x)g(x)=2,则f(x^2)g(x^2)=()。 A: 0 B: 1 C: 2 D: 3
【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
对于如下数组:67 98 45 78 23 56 14 77使用索引排序,则辅助用的索引数组最后可以是 _______________ A: 6 4 2 5 0 7 3 1 B: 4 7 2 6 1 3 0 5 C: 4 7 2 6 1 5 0 3 D: 0 7 3 1 6 4 2 5
对于如下数组:67 98 45 78 23 56 14 77使用索引排序,则辅助用的索引数组最后可以是 _______________ A: 6 4 2 5 0 7 3 1 B: 4 7 2 6 1 3 0 5 C: 4 7 2 6 1 5 0 3 D: 0 7 3 1 6 4 2 5
设(X,Y)服从区域G:{0£x£2;0£y£2}上的均匀分布,则P{|X–Y|£1}=().
设(X,Y)服从区域G:{0£x£2;0£y£2}上的均匀分布,则P{|X–Y|£1}=().
【单选题】已知函数f(x)=x 2 -(a-2)x-aln x(a∈R).当a=1时,证明对任意的x>0,f(x)+e x >x 2 +x+2.证明过程当a=1时,f(x)=x 2 +x-ln x,要证明f(x)+e x >x 2 +x+2,只需证明 2 ,设g(x)=e x -ln x-2,则问题转化为证明 3 ,令g′(x)=e x - =0,得e x = ,容易知道该方程有唯一解,不妨设为x 0 ,则x 0 满足e x 0 = ,当x变化时,g′(x)和g(x)变化情况如下表 g(x) min =g(x 0 )=e x 0 -ln x 0 -2= +x 0 -2,因为x 0 >0,且x 0 ≠1,所以g(x) min > 4 ,因此不等式得证.在解答过程中,3处应该是() A. 任意的x>0,g(x)<0 B. 任意的x>0,g(x)>0 C. 存在x>0,g(x)>0 D. 存在x>0,g(x)<0
【单选题】已知函数f(x)=x 2 -(a-2)x-aln x(a∈R).当a=1时,证明对任意的x>0,f(x)+e x >x 2 +x+2.证明过程当a=1时,f(x)=x 2 +x-ln x,要证明f(x)+e x >x 2 +x+2,只需证明 2 ,设g(x)=e x -ln x-2,则问题转化为证明 3 ,令g′(x)=e x - =0,得e x = ,容易知道该方程有唯一解,不妨设为x 0 ,则x 0 满足e x 0 = ,当x变化时,g′(x)和g(x)变化情况如下表 g(x) min =g(x 0 )=e x 0 -ln x 0 -2= +x 0 -2,因为x 0 >0,且x 0 ≠1,所以g(x) min > 4 ,因此不等式得证.在解答过程中,3处应该是() A. 任意的x>0,g(x)<0 B. 任意的x>0,g(x)>0 C. 存在x>0,g(x)>0 D. 存在x>0,g(x)<0
中国大学MOOC: 设 g(x)=1-2x,f[g(x)]=(1-x)/x,(x不等于0) ,则f(1/2)=?
中国大学MOOC: 设 g(x)=1-2x,f[g(x)]=(1-x)/x,(x不等于0) ,则f(1/2)=?