• 2021-04-14
    【单选题】已知函数f(x)=x 2 -(a-2)x-aln x(a∈R).当a=1时,证明对任意的x>0,f(x)+e x >x 2 +x+2.证明过程当a=1时,f(x)=x 2 +x-ln x,要证明f(x)+e x >x 2 +x+2,只需证明 2 ,设g(x)=e x -ln x-2,则问题转化为证明 3 ,令g′(x)=e x - =0,得e x = ,容易知道该方程有唯一解,不妨设为x 0 ,则x 0 满足e x 0 = ,当x变化时,g′(x)和g(x)变化情况如下表 g(x) min =g(x 0 )=e x 0 -ln x 0 -2= +x 0 -2,因为x 0 >0,且x 0 ≠1,所以g(x) min > 4 ,因此不等式得证.在解答过程中,3处应该是()
    A. 任意的x>0,g(x)<0 B. 任意的x>0,g(x)>0 C. 存在x>0,g(x)>0 D. 存在x>0,g(x)<0
  • e x -ln x-2>0

    内容

    • 0

      2.设$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f(x)$存在,$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g(x)$不存在,则( )。 A: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都不存在 B: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都存在 C: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$中恰有一个存在 D: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)+g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)-g(x)]$一定都不存在

    • 1

      设函数$f(x)$具有二阶导数,$g(x)=f(0)(1-x)+f(1)x$,则在区间$&#91;0,1&#93;$上,必有 A: 当$f'(x)\geq 0$时,$f(x)\geq g(x)$. B: 当$f'(x)\geq 0$时,$f(x)\leq g(x)$. C: 当$f''(x)\geq 0$时,$f(x)\geq g(x)$. D: 当$f''(x)\geq 0$时,$f(x)\leq g(x)$.

    • 2

      判断下列各组中的两个函数是同一函数的为(  ) A: f(x)=x3x,g(x)=x2 B: f(x)=x0(x≠0),g(x)=1(x≠0) C: f(x)=x2,g(x)=x D: f(x)=|x|,g(x)=(x)2

    • 3

      若对任意实数x,有¦(―x)=―¦(x),g(―x)=g(x),且x>0时¦′(x)>0,g′(x)>0,则x<0时

    • 4

      在如下命题中,正确命题个数为():(1)已知f(x)∈P&#91;x&#93;,则deg(f(x))≥0;(2)实数域和复数域之间不存在其他数域;(3)g(x),f(x)∈P&#91;x&#93;,g(x)≠0,g(x)|f(x),则deg(g(x))≥deg(f(x)). A: 0 B: 1 C: 2 D: 3