${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______
设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
高等数学求极限,求lim[1/e*(1+x)^(1/x)]^(1/x)【x趋于0】
高等数学求极限,求lim[1/e*(1+x)^(1/x)]^(1/x)【x趋于0】
设有如下程序段 int a[2] = {0}; int b[] = {0, 0, 1}; char c[] = {"A
设有如下程序段 int a[2] = {0}; int b[] = {0, 0, 1}; char c[] = {"A
相关系数r的取值范围是[]。 A: ﹥0 B: ﹤0 C: =-1~1 D: =0~1
相关系数r的取值范围是[]。 A: ﹥0 B: ﹤0 C: =-1~1 D: =0~1
函数f(x)=(e<sup>x</sup>-b)/[(x-a)(x-1)]有无穷型间断点x=0,有可去间断点x=1,则a,b=()。 A: 0;1 B: 0;e C: 1;e D: 1;1
函数f(x)=(e<sup>x</sup>-b)/[(x-a)(x-1)]有无穷型间断点x=0,有可去间断点x=1,则a,b=()。 A: 0;1 B: 0;e C: 1;e D: 1;1