已知[X]补=00101110,则真值X是 A: 42 B: 44 C: 46 D: 48
已知[X]补=00101110,则真值X是 A: 42 B: 44 C: 46 D: 48
class Test4 { public static void main(String [] args) { boolean x = true; boolean y = false; short z = 42; if((z++ = = 42) && (y = true)) z++; if((x = false) || (++z = = 45)) z++; System.out.println("z = " + z); } } 结果为:() A: z = 42 B: z = 44 C: z = 45 D: z = 46
class Test4 { public static void main(String [] args) { boolean x = true; boolean y = false; short z = 42; if((z++ = = 42) && (y = true)) z++; if((x = false) || (++z = = 45)) z++; System.out.println("z = " + z); } } 结果为:() A: z = 42 B: z = 44 C: z = 45 D: z = 46
对于代码struct X { int x {8}; X() : x {10} { x = 42; }};X c;则 c.x 的值是 A: 8 B: 10 C: 42 D: 不能确定
对于代码struct X { int x {8}; X() : x {10} { x = 42; }};X c;则 c.x 的值是 A: 8 B: 10 C: 42 D: 不能确定
※[48~50].(2)4..,...( )..※[46~47].(2)..().().().().※[46~47].(2)..().().().().※[44~45].(2)..( )......※[44~45].(2)..( )......※[42~43].(2),.9.()....().,..,,...,.,,,.※[39~41].(2)※[42~43].(2),.9.()....().,..,,...,.,,,.※[35~38].(2)※[39~41].(2) A: A. B: B. C: C. D: D.
※[48~50].(2)4..,...( )..※[46~47].(2)..().().().().※[46~47].(2)..().().().().※[44~45].(2)..( )......※[44~45].(2)..( )......※[42~43].(2),.9.()....().,..,,...,.,,,.※[39~41].(2)※[42~43].(2),.9.()....().,..,,...,.,,,.※[35~38].(2)※[39~41].(2) A: A. B: B. C: C. D: D.
定积分[img=91x42]17e0c637352c78a.jpg[/img]=
定积分[img=91x42]17e0c637352c78a.jpg[/img]=
已知[img=65x42]17e4431a7c57a29.png[/img]的一条积分曲线过(1,3)点,则此积分曲线方程为( ) 未知类型:{'options': ['', ' [img=91x42]17e4431a915afb3.png[/img]', ' [img=91x42]17e4431a9b2aab3.png[/img]', ' [img=91x42]17e4431aa45d5a8.png[/img]'], 'type': 102}
已知[img=65x42]17e4431a7c57a29.png[/img]的一条积分曲线过(1,3)点,则此积分曲线方程为( ) 未知类型:{'options': ['', ' [img=91x42]17e4431a915afb3.png[/img]', ' [img=91x42]17e4431a9b2aab3.png[/img]', ' [img=91x42]17e4431aa45d5a8.png[/img]'], 'type': 102}
化简[(X+1/X)^6-(X^6+1/X^6)-2]/[(X+1/X)^3+(X^3+1/X^3)]
化简[(X+1/X)^6-(X^6+1/X^6)-2]/[(X+1/X)^3+(X^3+1/X^3)]
高数:若f(x),g(x)在[a,b]区间连续,F(x)=[a,x定积分区间]g(x)d(x)*[b,x定积分区间]f(x)d(x).
高数:若f(x),g(x)在[a,b]区间连续,F(x)=[a,x定积分区间]g(x)d(x)*[b,x定积分区间]f(x)d(x).
设f(x)=x2,x∈[-1,1]2-x,x∈[1,2],则∫2-1f(x)dx=( )
设f(x)=x2,x∈[-1,1]2-x,x∈[1,2],则∫2-1f(x)dx=( )
[lncos(x-1)]/[1-sin(πx/2)]x≠1
[lncos(x-1)]/[1-sin(πx/2)]x≠1