设\(D\)是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {x{y^2}} dxdy \) = \( {1 \over 6} \) 。
设\(D\)是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {x{y^2}} dxdy \) = \( {1 \over 6} \) 。
在其定义区间上连续的函数是( )。 A: \(f(x) = \left\{ {\matrix{ {x\quad ,{\rm{0}} \le x \le {\rm{1}}} \cr {1 - x\quad ,1 < x \le 2} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {x\quad ,0 < x \le 1 } \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ {x\;\quad ,0 \le x < 1} \cr {0\;\quad \quad ,x = 1} \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { 1 \over {x - 1}}\quad ,0 \le x \le 1} \cr {0\quad ,1 \le x \le 2} \cr } } \right.\)
在其定义区间上连续的函数是( )。 A: \(f(x) = \left\{ {\matrix{ {x\quad ,{\rm{0}} \le x \le {\rm{1}}} \cr {1 - x\quad ,1 < x \le 2} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {x\quad ,0 < x \le 1 } \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ {x\;\quad ,0 \le x < 1} \cr {0\;\quad \quad ,x = 1} \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { 1 \over {x - 1}}\quad ,0 \le x \le 1} \cr {0\quad ,1 \le x \le 2} \cr } } \right.\)
设\( \Omega \) 是由\( 1 \le x \le 2 \) ,\( 0 \le y \le 1 \) ,\( 0 \le z \le 2 \) 所围区域,则\( \mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt \Omega } { { x^2}yz} dv \) =\( {7 \over 3} \)
设\( \Omega \) 是由\( 1 \le x \le 2 \) ,\( 0 \le y \le 1 \) ,\( 0 \le z \le 2 \) 所围区域,则\( \mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt \Omega } { { x^2}yz} dv \) =\( {7 \over 3} \)
设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。
设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。
函数\(f(x) = \left\{ {\matrix{ { { x^2} - 1\;, - 1 \le x < 0} \cr {x\;\quad \;,0 \le x < 1} \cr {2 - x\;\quad ,1 \le x \le 2} \cr } } \right.\)在\(x =\)( )处间断。______
函数\(f(x) = \left\{ {\matrix{ { { x^2} - 1\;, - 1 \le x < 0} \cr {x\;\quad \;,0 \le x < 1} \cr {2 - x\;\quad ,1 \le x \le 2} \cr } } \right.\)在\(x =\)( )处间断。______
对于任意随机事件$A$,则$0\le P(A)\le 1$.
对于任意随机事件$A$,则$0\le P(A)\le 1$.
-Quelledatesommes-nous?-Noussommes______. A: 1 janvier B: 1er janvier C: le 1 janvier D: le 1er janvier
-Quelledatesommes-nous?-Noussommes______. A: 1 janvier B: 1er janvier C: le 1 janvier D: le 1er janvier
设\(D\)为\( 1 \le x \le 2 \) 和\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D { { x^2}{e^{2y}}} d\sigma \) =\( {6 \over 7}\left( { { e^2} - 1} \right) \) 。
设\(D\)为\( 1 \le x \le 2 \) 和\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D { { x^2}{e^{2y}}} d\sigma \) =\( {6 \over 7}\left( { { e^2} - 1} \right) \) 。
14. Nous sommes _________. A: janvier 1er B: le 1er janvier C: janvier 1 D: le 1 janvier
14. Nous sommes _________. A: janvier 1er B: le 1er janvier C: janvier 1 D: le 1 janvier
函数$y = \arcsin (2x + 1)<br/>$的定义域为 ( ). A: $\{ \left. x \right| - 1 \le x \le 0\} <br/>$ B: $\{ \left. x \right| - \frac{1}{2} \le x \le 0\} <br/>$ C: $\{ \left. x \right|x \ge - \frac{1}{2}\} <br/>$ D: ${\rm{\{ }}\left. x \right|x \le 0\}<br/>$
函数$y = \arcsin (2x + 1)<br/>$的定义域为 ( ). A: $\{ \left. x \right| - 1 \le x \le 0\} <br/>$ B: $\{ \left. x \right| - \frac{1}{2} \le x \le 0\} <br/>$ C: $\{ \left. x \right|x \ge - \frac{1}{2}\} <br/>$ D: ${\rm{\{ }}\left. x \right|x \le 0\}<br/>$