下面程序的功能是输出以下9阶方阵。请填空。 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 4 5 4 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 # include
下面程序的功能是输出以下9阶方阵。请填空。 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 4 5 4 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 # include
一个待排序的数据元素序列为{5, 4, 3, 2, 1},采用基本插入排序对其进行排序,以下( )是插入排序每一趟的结果。 A: 4 5 3 2 1 3 4 5 2 1 2 3 4 5 1 1 2 3 4 5 B: 5 4 3 1 2 5 4 1 2 3 5 1 2 3 4 1 2 3 4 5 C: 4 3 2 1 5 3 2 1 5 4 2 1 5 4 3 1 5 4 3 2 D: 4 5 3 2 1 2 3 4 5 1 3 4 5 2 1 1 2 3 4 5
一个待排序的数据元素序列为{5, 4, 3, 2, 1},采用基本插入排序对其进行排序,以下( )是插入排序每一趟的结果。 A: 4 5 3 2 1 3 4 5 2 1 2 3 4 5 1 1 2 3 4 5 B: 5 4 3 1 2 5 4 1 2 3 5 1 2 3 4 1 2 3 4 5 C: 4 3 2 1 5 3 2 1 5 4 2 1 5 4 3 1 5 4 3 2 D: 4 5 3 2 1 2 3 4 5 1 3 4 5 2 1 1 2 3 4 5
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
设(X,Y)的联合密度为[img=246x61]17de89815546a18.png[/img],则EY=_____, E(XY)=_____. A: EY=4/5, E(XY)=7/5 B: EY=7/5, E(XY)=2/5 C: EY=3/5, E(XY)=1/2 D: EY=2/3, E(XY)=2/5
设(X,Y)的联合密度为[img=246x61]17de89815546a18.png[/img],则EY=_____, E(XY)=_____. A: EY=4/5, E(XY)=7/5 B: EY=7/5, E(XY)=2/5 C: EY=3/5, E(XY)=1/2 D: EY=2/3, E(XY)=2/5
下面程序的功能是输出以下9阶方阵。请填空。 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 4 5 4 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 # include int main( ) { int a[10][10],n,i,j,m; scanf("%d",&n); if(n%2= =0) m=n/2; else( ); for(i=0;i m=n/2+1 n–i–1 n–i–1
下面程序的功能是输出以下9阶方阵。请填空。 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 4 5 4 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 # include int main( ) { int a[10][10],n,i,j,m; scanf("%d",&n); if(n%2= =0) m=n/2; else( ); for(i=0;i m=n/2+1 n–i–1 n–i–1
计算行列式D=1、2、3、4;2、3、4、1;3、4、1、2;4、1、3、2的值.
计算行列式D=1、2、3、4;2、3、4、1;3、4、1、2;4、1、3、2的值.
【单选题】如图示代码,下面哪个是正确的输出结果 A. 0 1 2 3 4 5 B. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 C. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 D. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
【单选题】如图示代码,下面哪个是正确的输出结果 A. 0 1 2 3 4 5 B. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 C. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 D. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
(1)(-2x^2y^3)^2乘(xy)^3(2)(2a+3b)(3a-2b)(3)5x^3(x+4)(x-4)(4)(2x-y-3)^2(5)(2a)^3*b^4/(-12a^3b^2)(6)(6x^2y^3-8x^3y^2z)/8x^2y^3
(1)(-2x^2y^3)^2乘(xy)^3(2)(2a+3b)(3a-2b)(3)5x^3(x+4)(x-4)(4)(2x-y-3)^2(5)(2a)^3*b^4/(-12a^3b^2)(6)(6x^2y^3-8x^3y^2z)/8x^2y^3
分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2
分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2
函数f(xy,)=xy在条件x+y=1下的极大值为()。 A: 1/4 B: 1/2 C: 1 D: 2
函数f(xy,)=xy在条件x+y=1下的极大值为()。 A: 1/4 B: 1/2 C: 1 D: 2