求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3
求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3
已知\( y = {x^3}\cos 2x \),则\( y'' \)为( ). A: 0 B: \( 6x\cos 2x{\rm{ + }}12{x^2}\sin 2x - 4{x^3}\cos 2x \) C: \( 6x\cos 2x - 12{x^2}\sin 2x{\rm{ + }}4{x^3}\cos 2x \) D: \( 6x\cos 2x - 12{x^2}\sin 2x - 4{x^3}\cos 2x \)
已知\( y = {x^3}\cos 2x \),则\( y'' \)为( ). A: 0 B: \( 6x\cos 2x{\rm{ + }}12{x^2}\sin 2x - 4{x^3}\cos 2x \) C: \( 6x\cos 2x - 12{x^2}\sin 2x{\rm{ + }}4{x^3}\cos 2x \) D: \( 6x\cos 2x - 12{x^2}\sin 2x - 4{x^3}\cos 2x \)
1802fa0b3e3fac1.png,求y的一阶导数 A: 3sin^2(x/3) B: sin^2(x/3) C: 3sin^2(x/3)cos(x/3) D: sin^(x/3)cos(x/3)
1802fa0b3e3fac1.png,求y的一阶导数 A: 3sin^2(x/3) B: sin^2(x/3) C: 3sin^2(x/3)cos(x/3) D: sin^(x/3)cos(x/3)
设f(cos x) = 3 − cos 2x,则f(sin x) =()
设f(cos x) = 3 − cos 2x,则f(sin x) =()
积分(x^3)cos(x^2)dx
积分(x^3)cos(x^2)dx
【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
$\int \sin^3 x \cos x dx = $ A: $\frac{\sin^4 x}{4} +C$ B: ${\sin^4 x} +C$ C: $\frac{\cos^4 x}{4} +C$ D: $\frac{\cos^4 x}{4} +C$
$\int \sin^3 x \cos x dx = $ A: $\frac{\sin^4 x}{4} +C$ B: ${\sin^4 x} +C$ C: $\frac{\cos^4 x}{4} +C$ D: $\frac{\cos^4 x}{4} +C$
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
\( \int { { {\cos 2x} \over {\sin x - \cos x}}dx} = \)( ) A: \(\sin x + \cos x + C \) B: \( - \sin x + \cos x + C \) C: \( - \sin x- \cos x + C \) D: \( \sin x - \cos x + C \)
\( \int { { {\cos 2x} \over {\sin x - \cos x}}dx} = \)( ) A: \(\sin x + \cos x + C \) B: \( - \sin x + \cos x + C \) C: \( - \sin x- \cos x + C \) D: \( \sin x - \cos x + C \)
cos(x)*cos(x/2)*cos(x/4)*cos(x/8).cos(x/(2^(n-1))
cos(x)*cos(x/2)*cos(x/4)*cos(x/8).cos(x/(2^(n-1))