确定函数定义域: [tex=6.357x2.786]NzH7H9oZ4OiU1XTrRT7iDlnPyfxjpOgzBcz8EMhw/3ESGxLBPlY8RiLfaLyDEdkW[/tex].
确定函数定义域: [tex=6.357x2.786]NzH7H9oZ4OiU1XTrRT7iDlnPyfxjpOgzBcz8EMhw/3ESGxLBPlY8RiLfaLyDEdkW[/tex].
利用留数定理计算下列积分: [tex=6.357x2.786]iSd92wPIStHdOrs6Yvg07jXP5LPQOsQx8gZGFc0s6hZoTr/xw5eMgPZTpbafQzMlHsn96LBareWi7V7tpS9fJQ==[/tex][br][/br]
利用留数定理计算下列积分: [tex=6.357x2.786]iSd92wPIStHdOrs6Yvg07jXP5LPQOsQx8gZGFc0s6hZoTr/xw5eMgPZTpbafQzMlHsn96LBareWi7V7tpS9fJQ==[/tex][br][/br]
利用定积分的定义计算定积分: [tex=6.357x2.786]Oci5g/t15HM928326CLXWc6FHchDpVhs//6WTZWwogoe3Wan+XqSgaorAB96SBAM[/tex]
利用定积分的定义计算定积分: [tex=6.357x2.786]Oci5g/t15HM928326CLXWc6FHchDpVhs//6WTZWwogoe3Wan+XqSgaorAB96SBAM[/tex]
设一平面垂直于平面 [tex=1.786x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex], 并通过从点[tex=4.0x1.357]nVJJEKVA4Modx70PXK0OUg==[/tex] 到直线[tex=6.357x2.786]7EJHVCtO2IWq3KpdB+jQsu2TzFWJjsntDAyagYRwefkWw9jfgt9jfZ6m21aVjFCBB74g/x/pgO01mkmjdtcLYA==[/tex] 的垂线,求此平面的方程
设一平面垂直于平面 [tex=1.786x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex], 并通过从点[tex=4.0x1.357]nVJJEKVA4Modx70PXK0OUg==[/tex] 到直线[tex=6.357x2.786]7EJHVCtO2IWq3KpdB+jQsu2TzFWJjsntDAyagYRwefkWw9jfgt9jfZ6m21aVjFCBB74g/x/pgO01mkmjdtcLYA==[/tex] 的垂线,求此平面的方程
设一平面垂直于平面 [tex=2.357x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex], 并通过从点[tex=4.0x1.357]nVJJEKVA4Modx70PXK0OUg==[/tex]到直线[tex=6.357x2.786]7EJHVCtO2IWq3KpdB+jQsu2TzFWJjsntDAyagYRwefkWw9jfgt9jfZ6m21aVjFCBB74g/x/pgO01mkmjdtcLYA==[/tex]的垂线,求此平面的方程
设一平面垂直于平面 [tex=2.357x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex], 并通过从点[tex=4.0x1.357]nVJJEKVA4Modx70PXK0OUg==[/tex]到直线[tex=6.357x2.786]7EJHVCtO2IWq3KpdB+jQsu2TzFWJjsntDAyagYRwefkWw9jfgt9jfZ6m21aVjFCBB74g/x/pgO01mkmjdtcLYA==[/tex]的垂线,求此平面的方程
设[tex=10.643x1.429]WSlAUy5l9EAUxxLjkXZaugWZmlSJ9UGVzMF0jVnqHz8qcoJkcpTzPPcdrLfnokhj[/tex]求[tex=6.357x2.786]ybep552s6B57scuqsHbergb29HCUEa1YakGGZOKorYrkp6eCa07ATusyM1N1QxpCp/BOr4LpNgeN6CWiF0V9zQ==[/tex] (设[tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex]连续).
设[tex=10.643x1.429]WSlAUy5l9EAUxxLjkXZaugWZmlSJ9UGVzMF0jVnqHz8qcoJkcpTzPPcdrLfnokhj[/tex]求[tex=6.357x2.786]ybep552s6B57scuqsHbergb29HCUEa1YakGGZOKorYrkp6eCa07ATusyM1N1QxpCp/BOr4LpNgeN6CWiF0V9zQ==[/tex] (设[tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex]连续).
设[tex=2.0x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]为可逆矩阵,[tex=6.357x2.786]yobSOrm47gc9Hss4HGX8PPdc3v32PHfTz5ZuXTgVg0Aw3GLEFUbIuZUtMUimelrq+HHqwSo2ZJbRzLOKDDCgPg==[/tex]为分块矩阵,则[tex=2.643x1.214]4ZIIVaSr/ozLcM3pAvGx3g==[/tex]
设[tex=2.0x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]为可逆矩阵,[tex=6.357x2.786]yobSOrm47gc9Hss4HGX8PPdc3v32PHfTz5ZuXTgVg0Aw3GLEFUbIuZUtMUimelrq+HHqwSo2ZJbRzLOKDDCgPg==[/tex]为分块矩阵,则[tex=2.643x1.214]4ZIIVaSr/ozLcM3pAvGx3g==[/tex]
求向量场[tex=5.857x1.286]95oGKHE70oatJjOJjBYU2eMc42shNUkm357k434yA34=[/tex],其中[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]为常数,沿圆周[tex=6.357x2.786]fnpmC2J6JmQBLyo5NmGAz89fzajrsY2GMIIvBoKtXjOFrFyA88bveGFi8uI+hAhZ4zYI6117zkV+GlCqSNYaAAxZx39GTFyKVa0R11rA9AI=[/tex]的环流量 .
求向量场[tex=5.857x1.286]95oGKHE70oatJjOJjBYU2eMc42shNUkm357k434yA34=[/tex],其中[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]为常数,沿圆周[tex=6.357x2.786]fnpmC2J6JmQBLyo5NmGAz89fzajrsY2GMIIvBoKtXjOFrFyA88bveGFi8uI+hAhZ4zYI6117zkV+GlCqSNYaAAxZx39GTFyKVa0R11rA9AI=[/tex]的环流量 .
设方阵A, B都可逆,证明:分块阵[tex=6.357x2.786]075gCzZzsMRb6HYXYk9X9xyS3cJjnut4SJWPxkWsiB79OoZjL5pj/JCISfROx44+2QBUYtUvdxrZmykwkLy5KH20k3oVnF7/bZYe2OhsYN1PVp/HcAiFynGNTNda5vDmzmX+AI705wDx1lnxTLJ/QA==[/tex]可逆,且[tex=17.643x3.0]075gCzZzsMRb6HYXYk9X92zk8W4u1qJBIO8aFf+ZsZwaC6mXHyaO42ZZFn3Y5ty/ws5n5xqaIQAkc5J9obD8ZxFrsxVRBoeKNHZk5s+3qfBeX7ElyfsCwRVuouQo6k7gCLd7DUAksGyb7zwkg08rDoROVYU0513gDAqK9IJNPMquetQo9xwB2wbxe6lpUKrbMSFugSNRFMitS3RShl8MWg==[/tex]
设方阵A, B都可逆,证明:分块阵[tex=6.357x2.786]075gCzZzsMRb6HYXYk9X9xyS3cJjnut4SJWPxkWsiB79OoZjL5pj/JCISfROx44+2QBUYtUvdxrZmykwkLy5KH20k3oVnF7/bZYe2OhsYN1PVp/HcAiFynGNTNda5vDmzmX+AI705wDx1lnxTLJ/QA==[/tex]可逆,且[tex=17.643x3.0]075gCzZzsMRb6HYXYk9X92zk8W4u1qJBIO8aFf+ZsZwaC6mXHyaO42ZZFn3Y5ty/ws5n5xqaIQAkc5J9obD8ZxFrsxVRBoeKNHZk5s+3qfBeX7ElyfsCwRVuouQo6k7gCLd7DUAksGyb7zwkg08rDoROVYU0513gDAqK9IJNPMquetQo9xwB2wbxe6lpUKrbMSFugSNRFMitS3RShl8MWg==[/tex]
设方阵A, B都可逆,证明:分块阵[tex=6.357x2.786]075gCzZzsMRb6HYXYk9X9xyS3cJjnut4SJWPxkWsiB79OoZjL5pj/JCISfROx44+2QBUYtUvdxrZmykwkLy5KH20k3oVnF7/bZYe2OhsYN1PVp/HcAiFynGNTNda5vDmzmX+AI705wDx1lnxTLJ/QA==[/tex]可逆,且[tex=17.643x3.0]075gCzZzsMRb6HYXYk9X92zk8W4u1qJBIO8aFf+ZsZwaC6mXHyaO42ZZFn3Y5ty/ws5n5xqaIQAkc5J9obD8ZxFrsxVRBoeKNHZk5s+3qfBeX7ElyfsCwRVuouQo6k7gCLd7DUAksGyb7zwkg08rDoROVYU0513gDAqK9IJNPMquetQo9xwB2wbxe6lpUKrbMSFugSNRFMitS3RShl8MWg==[/tex]
设方阵A, B都可逆,证明:分块阵[tex=6.357x2.786]075gCzZzsMRb6HYXYk9X9xyS3cJjnut4SJWPxkWsiB79OoZjL5pj/JCISfROx44+2QBUYtUvdxrZmykwkLy5KH20k3oVnF7/bZYe2OhsYN1PVp/HcAiFynGNTNda5vDmzmX+AI705wDx1lnxTLJ/QA==[/tex]可逆,且[tex=17.643x3.0]075gCzZzsMRb6HYXYk9X92zk8W4u1qJBIO8aFf+ZsZwaC6mXHyaO42ZZFn3Y5ty/ws5n5xqaIQAkc5J9obD8ZxFrsxVRBoeKNHZk5s+3qfBeX7ElyfsCwRVuouQo6k7gCLd7DUAksGyb7zwkg08rDoROVYU0513gDAqK9IJNPMquetQo9xwB2wbxe6lpUKrbMSFugSNRFMitS3RShl8MWg==[/tex]