设函数f(x)=a|x|(a>0),且f(2)=4,则( ) A: f(-1)>f(-2) B: f(1)>f(2) C: f(2)<f(-2) D: f(-3)>f(-2)
设函数f(x)=a|x|(a>0),且f(2)=4,则( ) A: f(-1)>f(-2) B: f(1)>f(2) C: f(2)<f(-2) D: f(-3)>f(-2)
设f(x)=x2+bx+c且f(0)=f(2),则( ) A: f(-2)<c<f(32) B: f(32)<c<f(-2) C: f(32)<f(-2)<c D: c<f(32)<f(-2)
设f(x)=x2+bx+c且f(0)=f(2),则( ) A: f(-2)<c<f(32) B: f(32)<c<f(-2) C: f(32)<f(-2)<c D: c<f(32)<f(-2)
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
设f(x)为连续函数,F(t)=,则F’(2)=()。 A: f(2) B: 2f(2) C: -f(2) D: 0
设f(x)为连续函数,F(t)=,则F’(2)=()。 A: f(2) B: 2f(2) C: -f(2) D: 0
f(x)=x2+bx+c,x∈R,有f(2+x)=f(2-x),则( ) A: f(1)<f(2)<f(4) B: f(2)<f(4)<f(1) C: f(4)<f(2)<f(1) D: f(2)<f(1)<f(4) E: f(1)<f(4)<f(2)
f(x)=x2+bx+c,x∈R,有f(2+x)=f(2-x),则( ) A: f(1)<f(2)<f(4) B: f(2)<f(4)<f(1) C: f(4)<f(2)<f(1) D: f(2)<f(1)<f(4) E: f(1)<f(4)<f(2)
设f(x)为连续函数,F(t)=f(x)dx,则F’(2)=()。 A: 2f(2) B: f(2) C: -f(2) D: 0
设f(x)为连续函数,F(t)=f(x)dx,则F’(2)=()。 A: 2f(2) B: f(2) C: -f(2) D: 0
设有f(x)为连续函数,则有F’(2)=() A: 2f(2) B: f(2) C: -f(2) D: 0
设有f(x)为连续函数,则有F’(2)=() A: 2f(2) B: f(2) C: -f(2) D: 0
已知\( y = {f^2}(x) \),假设\( f(u) \)二阶可导,则 \( y'' \)为( ). A: \( 2{[f'(x)]^2} + 2f(x)f'(x) \) B: \( 2[f'(x)] + 2f(x)f''(x) \) C: \( 2{[f'(x)]^2} + 2f(x)f''(x) \) D: \( 2{[f'(x)]^2} + f(x)f''(x) \)
已知\( y = {f^2}(x) \),假设\( f(u) \)二阶可导,则 \( y'' \)为( ). A: \( 2{[f'(x)]^2} + 2f(x)f'(x) \) B: \( 2[f'(x)] + 2f(x)f''(x) \) C: \( 2{[f'(x)]^2} + 2f(x)f''(x) \) D: \( 2{[f'(x)]^2} + f(x)f''(x) \)
设f(x)为连续函数,则等于() A: f(2)-f(0) B: 1/2[f(11)-f(0)] C: 1/2[f(2)-f(0)] D: f(1)-f(0)
设f(x)为连续函数,则等于() A: f(2)-f(0) B: 1/2[f(11)-f(0)] C: 1/2[f(2)-f(0)] D: f(1)-f(0)
设f(x)为连续函数,则Fˊ(2)等于(). A: 2f(2) B: f(2) C: -f(2) D: 0
设f(x)为连续函数,则Fˊ(2)等于(). A: 2f(2) B: f(2) C: -f(2) D: 0