• 2021-04-14 问题

    f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]

    f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]

  • 2022-06-04 问题

    函数[img=103x25]17e0bca19b523a5.png[/img]在区间[0,4]上的最大值和最小值分别是( )。 A: 最大值f(4)=8,最小值f(0)=0 B: 最小值f(4)=8,最大值f(0)=0 C: 最大值f(4)=8,最小值f(1)=3 D: 最大值f(1)=3,最小值f(0)=0

    函数[img=103x25]17e0bca19b523a5.png[/img]在区间[0,4]上的最大值和最小值分别是( )。 A: 最大值f(4)=8,最小值f(0)=0 B: 最小值f(4)=8,最大值f(0)=0 C: 最大值f(4)=8,最小值f(1)=3 D: 最大值f(1)=3,最小值f(0)=0

  • 2021-04-14 问题

    【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0,    F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2,  F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0,    F(x)=0; 0≤x<2,   F(x)=1/8x³; x≥2,    F(x)=0 (3) 1/8

    【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0,    F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2,  F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0,    F(x)=0; 0≤x<2,   F(x)=1/8x³; x≥2,    F(x)=0 (3) 1/8

  • 2022-06-09 问题

    8、求积公式ò2 f (x)dx » 1 f (0) + 4 f (1) + 1 f (2) 的代数0 3 3 3精确度为( )。 A: 1 B: 2 C: 3 D: 4

    8、求积公式ò2 f (x)dx » 1 f (0) + 4 f (1) + 1 f (2) 的代数0 3 3 3精确度为( )。 A: 1 B: 2 C: 3 D: 4

  • 2022-06-14 问题

    已知f(3)=2,f'(3)=-2,则[img=123x35]17da5cddd9e7724.jpg[/img] A: -4 B: 8 C: 0 D: 不存在

    已知f(3)=2,f'(3)=-2,则[img=123x35]17da5cddd9e7724.jpg[/img] A: -4 B: 8 C: 0 D: 不存在

  • 2022-05-28 问题

    已知函数f(x)=ax+a-x(a>0且a≠1),且f(1)=3,则f(0)+f(2)的值是(  ) A: 7 B: 8 C: 9 D: 10

    已知函数f(x)=ax+a-x(a>0且a≠1),且f(1)=3,则f(0)+f(2)的值是(  ) A: 7 B: 8 C: 9 D: 10

  • 2022-07-24 问题

    设f(x)=x2+bx+x满足关系式f(1+x)=f(1-x),则下述结论中,正确的是( ). A: f(0)>f(1)>f(3) B: f(1)>f(0)>f(3) C: f(3)>f(1)>f(0) D: f(3)>f(0)>f(1) E: f(1)>f(3)>f(0)

    设f(x)=x2+bx+x满足关系式f(1+x)=f(1-x),则下述结论中,正确的是( ). A: f(0)>f(1)>f(3) B: f(1)>f(0)>f(3) C: f(3)>f(1)>f(0) D: f(3)>f(0)>f(1) E: f(1)>f(3)>f(0)

  • 2022-06-12 问题

    已知函数f(x)是定义在实数集R上的奇函数,且f(x)在&#91;3,5&#93;上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)

    已知函数f(x)是定义在实数集R上的奇函数,且f(x)在&#91;3,5&#93;上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)

  • 2022-10-25 问题

    如果把积分区间二等分,利用Simpson's \(\frac{1}{3}\) rule 求得的\(\int_{0}^{16} f(x)dx\)的值是20, 那么把积分区间分成相等的4个区间时,利用Simpson's \(\frac{1}{3}\) rule求得的近似值是多少? ( \(\int_{0}^{16} f(x)dx\)의 부분구간의 개수를 2개로 설정한 Simpson's \(\frac{1}{3}\) rule로 구한 근삿값이 20일때, 부분구간의 개수를 4개로 설정한 Simpson's \(\frac{1}{3}\) rule 로 구한 근삿값을 구하시오) A: 20 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) B: 10 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) C: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + 2f(12) ) D: 10 + \(\frac{8}{3}\) ( 2f(4) - 2f(8) + f(12) ) E: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + f(12) )

    如果把积分区间二等分,利用Simpson's \(\frac{1}{3}\) rule 求得的\(\int_{0}^{16} f(x)dx\)的值是20, 那么把积分区间分成相等的4个区间时,利用Simpson's \(\frac{1}{3}\) rule求得的近似值是多少? ( \(\int_{0}^{16} f(x)dx\)의 부분구간의 개수를 2개로 설정한 Simpson's \(\frac{1}{3}\) rule로 구한 근삿값이 20일때, 부분구간의 개수를 4개로 설정한 Simpson's \(\frac{1}{3}\) rule 로 구한 근삿값을 구하시오) A: 20 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) B: 10 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) C: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + 2f(12) ) D: 10 + \(\frac{8}{3}\) ( 2f(4) - 2f(8) + f(12) ) E: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + f(12) )

  • 2022-05-31 问题

    设f(x)定义在(0,正无穷)上的函数,对任意的x1,x2∈(0,正无穷),都有f(x1*x2)=f(x1)(x2),且f(8)=3,求f(2)的值.

    设f(x)定义在(0,正无穷)上的函数,对任意的x1,x2∈(0,正无穷),都有f(x1*x2)=f(x1)(x2),且f(8)=3,求f(2)的值.

  • 1 2 3 4 5 6 7 8 9 10